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Three questions about provable security

I How to define security?

I How to model primitives?

I What are the limits of information-theoretical security?

Answers from the point of view of cryptanalysis.
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... or maybe cryptanalysis can learn something too ...
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How to define security?
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How to define security?
Cryptanalysis
I Key-recovery, message-recovery, forgery, collision, preimage, ...

I Attacks are often based on distinguishers (i.e. use the ‘last round trick’)
... but lines between key-recovery and distinguisher are blurring and will disappear

Information-theoretical security
I Indistinguishability as worst case security

�

End users don’t care about indistinguishability from an idealized construction

Subtle difference in meaning of ‘distinguisher’
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Indistinguishability

π

P

Ideal world

K

P

K

P

Real world

I Uniform random permutation π

I Public uniform random permutation P
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Indistinguishability a.k.a. simple hypothesis testing

µ0 µ1

Null hypothesis

µ0 µ1

Alternative hypothesis

I Transcript set T

I Probability distributions P and Q : 2T → [0, 1]
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Indistinguishability
How to measure the power of adversaries?

I Provable security approach: statistical distance or total variation distance

∆(P,Q) = max
E⊂T

P(E )− Q(E )

I Statistical distance is usually not used in cryptanalysis (for good reasons)

I Neyman and Pearson (1930s):

– False-positive (probability α) and false-negative (probability β) results

– Minimize the overall cost of errors C(α, β)
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Neyman-Pearson theory of hypothesis testing

µ0 τ µ1

β α

R

Null
hypothesis

Alternative
hypothesis

I If transcript is in R, reject the null hypothesis (Exclamation-circle R is the adversary)

I False positive probability α = P(R) and false negative probability β = 1 − Q(R)
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Neyman-Pearson theory of hypothesis testing
Receiver operating characteristic curve

0 1
4

1
2

3
4

10

1
4

1
2

3
4

1

α = P(R)

1
−

β
=

Q
(R

)

µ1 − µ0 = σ
µ1 − µ0 = σ

2
µ1 − µ0 = 0



10

Indistinguishability
How to measure the power of adversaries?

I Advantage bound for an advesary (i.e. a rejection region R) is

1 − α− β = Q(R)− P(R) ≤ ∆(P,Q)

I Bounds cost function C(α, β) = α+ β from below

I Power bound (with YL Chen, Crypto 2024):

1 − β ≤ f (α)

I Bounds any increasing cost function C(α, β) from below
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Power bounds
Example: block cipher in counter mode

nonce . . .
1 2 3 l

π π π . . . π

. . .m1 m2 m3 ml

c1 c2 c3 . . . cl

I Assume P is the ideal world and Q is the real world (Exclamation-circle this matters)

I Proof comes down to prp-prf switching lemma
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Power bounds
Example: block cipher in counter mode

I Conditional probability distribution (for event E ⊂ T ):

PE (R) =
P(R ∩ E )

P(E )

I Excluding a ‘bad event’ B of probability ε = P(B):

PT\B(R) ≤ P(R)

1 − ε

I Since Q = PT\B and ε ≤ 1
N
(
σ
2
)

for σ ≤
√

2N blocks,

1 − β ≤ α

1 − σ(σ−1)
2N
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Power bounds
Example: block cipher in counter mode
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Misconceptions about attacks

I Advantages and statistical distance are arbitrary

I Why is this a problem?

I Examples of misconceptions about attacks:

– ‘Attacks are symmetric’

– ‘Reductions to indistinguishability are tight’

I See paper for applications such as multi-user security
GLOBE https://eprint.iacr.org/2024/658

https://eprint.iacr.org/2024/658
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Misconceptions about attacks
#1. ‘Attacks are symmetric’

I Distinguishing P from Q is not the same as distinguishing Q from P

I C(α, β) 6= C(β, α)

I Example: counter mode

1 − β ≤ α

1 − σ(σ−1)
2N

versus 1 − β ≤ σ(σ − 1)
2N +

(
1 − σ(σ − 1)

2N

)
α

Collision happens
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Misconceptions about attacks
#2. ‘Reductions to indistinguishability are tight’

I Example: full recovery of a b-bit message in counter mode

I Success probability PS

Advantage bound

PS ≤ σ(σ − 1)
2N + 2−b

Power bound

PS ≤ 2−b

1 − σ(σ−1)
2N
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Misconceptions about attacks
#2. ‘Reductions to indistinguishability are tight’

8 7 6 5 4 3 2 10

0.2

0.4

0.6

0.8

1

b

P S

Probability of succesfully recovering a b-bit message

σ =
√

N
σ =

√
N/2

guessing



18

How to model primitives?
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How to model primitives?
Cryptanalysis
I Only model part of the primitive, using trails (V1,V2, . . . ,Vr+1)

I Used to be probabilistic, but not anymore (for good reasons)

Information-theoretical security
I Standard model:

Block cipher ≈ Uniform random permutation (prp-security)

I Ideal model:

Block cipher ≈ Ideal cipher (idealization)
Permutation ≈ Uniform random permutation



19

How to model primitives?
Cryptanalysis
I Only model part of the primitive, using trails (V1,V2, . . . ,Vr+1)

I Used to be probabilistic, but not anymore (for good reasons)

Information-theoretical security
I Standard model:

Block cipher ≈ Uniform random permutation (prp-security)

I Ideal model:

Block cipher ≈ Ideal cipher (idealization)
Permutation ≈ Uniform random permutation



20

How to model primitives?
Standard model

I In practice:

– Replace PRP with uniform random permutation

– Just another ideal model?

I Ignore the PRP term

– Maybe cryptanalysts know what it is?

– No, and actually ...
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How to model primitives?
Standard model

I In practice:

– Replace PRP with uniform random permutation

– Just another ideal model? Yes

I Ignore the PRP term

– Maybe cryptanalysts know what it is?

– No, and actually ...
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How to model primitives?
Standard model

I See Koblitz and Menezes, Bernstein and Lange
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How to model primitives?
Standard model meets linear cryptanalysis

I Block cipher Ek and a mask v

Pr
k

[
vT Ek(00 · · · 0) = 0

]
=

1
2 + ε

I For an n bit key, typically ε ≈ 2−n/2 (cf. zero-correlation linear cryptanalysis)

I Multidimensional linear cryptanalysis: with M memory and T time, for α = 1
2 :

1 − β =
1
2 +Ω

(√
T × M

2n

)
I Actual block ciphers are not good PRPs
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Commercial break
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How to model primitives?
Ideal model

I Ideal model allows making p queries to the ideal cipher

I In practice, the ideal model is stronger than the standard model

– Set p = 0 to recover standard model bound (without PRP term)

– Primitive queries are important (capture real generic attacks)

Exclamation-Triangle Widespread confusion between primitive model and access model
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What are the limits of information-theoretical security?



26

What are the limits of information-theoretical security?

I Information-theoretical security of real block ciphers ≈ none

I Weaker security notions?

I Randomess trap

– Don’t expect too much (often results in ignoring important aspects)

– Not every idealization must be based on randomness (examples in cryptanalysis)
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What are the limits of information-theoretical security?
Pointwise decorrelation

I Pointwise independence: for all x and y ,

Pr
k

[
Ek(x) = y

]
=

1
N

I Example: x 7→ x + k

I Nonetheless, does not hold for most block ciphers (barely enough randomness)
cf. issues with definition of prp security
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What are the limits of information-theoretical security?
Pairwise decorrelation (a.k.a. pairwise independence)

I Pairwise independence: for all (x1, x2), (y1, y2) with x1 6= x2 and y1 6= y2,

Pr
k

[
(Ek(x1),Ek(x2)) = (y1, y2)

]
=

1
N × 1

N − 1

I Example: x 7→ k1 · x + k2 (exclude zero)

I Most block ciphers are not pairwise independent (not enough randomness)
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Pairwise independence

I ε-pairwise indepencence: for all (x1, x2) with x1 6= x2,

1
2
∑

y1 6=y2

∣∣∣∣∣Prk [(Ek(x1),Ek(x2)) = (y1, y2)
]
− 1

N × 1
N − 1

∣∣∣∣∣ ≤ ε

I Example: x 7→ k1 · x + k3 is ε-pairwise independent with ε = 1/2N

I ε is large for most block ciphers (barely enough randomness)

I Key-alternating block ciphers with independent and uniform random rounds keys
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Pairwise independence

I Round keys are not independent

I So, what is the point?

I Actually, we don’t even need keys for pairwise independence to be meaningful

I Pairwise independence rules out some cryptanalytic techniques

– Differential cryptanalysis if quasidifferential trails with nonzero masks are ignored

– Class of techiques can be defined in terms of trails (geometric approach)
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Pairwise independence
AES with independent round keys

I Variant of the AES with r rounds and independent round keys

I Liu, Tessaro and Vaikuntanathan:

ε = (0.924)r

I Need r ≥ 9168 to get ε ≤ 2−128

I Recent joint work with Gregor Leander and Immo Schütt (ePrint 2025/1495):

ε = 244 · 2−30
⌊ r

4
⌋

I Need r ≥ 24 to get ε ≤ 2−128

I These are preliminary results (large improvement in exponent still unpublished)
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Pairwise independence
AES with independent round keys

I Proof: see ePrint 2025/1495 (only 5 pages Exclamation)

I Idea developed in 2021 to address a question from Rønjom (ePrint 2019/622)

I Application to pairwise independence:
Master’s thesis of Immo Schütt (Ruhr University Bochum, March 2025)

I Techniques used:

– Essentially an application of the geometric approach to cryptanalysis

– Truncated differentials and singular values of the difference-distribution matrix
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Pairwise independence
AES with independent round keys

I Let D be the difference-distribution matrix of a random cipher Ek with whitening

Db,a = Pr
k,x

[
Ek(x + a) = Ek(x) + b

]
(it doesn’t matter what x is, you can take it either random or fixed)

I Ek is pairwise independent if and only if ‖D − U‖∞ ≤ 2ε

I We show that ‖D −U‖2 ≤ 2−30 for four-round AES with independent round keys

I In several ways, ‖ · ‖2 is actually better motivated than ‖ · ‖∞ (cf. power bounds)
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Pairwise independence
AES with independent round keys

Activity patterns
I Familiar concept from cryptanalysis

I For z ∈ {0, 1}n, define [z ] = [z1]× [z2]× · · · × [zn] with [0] = {0} and [1] = Fq

I Let V = Span
{
δ[z]

∣∣ z ∈ {0, 1}n
}
⊂ R[Fn

q], with δ[z] the indicator of [z ]

Trails and approximation maps
I Basis-free geometric approach for inner product spaces (Crypto 2021)

I Approximation maps πV D iV , πV⊥D iV , πV D iV⊥ and πV⊥D iV⊥
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Pairwise independence
AES with independent round keys

I Trails determined by the decomposition R = V ⊕ V⊥ give

∥∥D − U
∥∥

2 ≤
∥∥∥∥[‖πV (D − U)iV ‖2 ‖πV (D − U) iV ‖2

‖πV⊥(D − U) iV ‖2 ‖πV⊥(D − U) iV⊥‖2

]∥∥∥∥
2
.

I Term πV (D − U)iV : truncated differentials defined by activity patterns

– Compute it numerically (2n × 2n matrix)

– Closed-form formula based on Frobenius norm: ‖πV (D − U)iV ‖2 ≤ (2/(√q − 1))n

I Other terms: bound using σ3(DS), easiest approach is Frobenius norm
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Three questions about provable security

I How to define security?
Indistinguishability as a basis, but don’t forget what the end user needs
Consider alternatives to advantage bounds (such as power bounds)

I How to model primitives?
Prefer the ideal model over the standard model (primitive queries are important)
In practice, the standard model is just another ideal model

I What are the limits of information-theoretical security?
Don’t fall into the randomness trap
Not every idealization must be based on randomness (trails in cryptanalysis Exclamation)


