
Key Control Security of
Key Derivation Functions from

NIST SP 800-108

Tetsu Iwata
Nagoya University

The 1st Workshop on
Generic Attacks and Proofs in Symmetric Cryptography, GAPS 2025

September 5, 2025, NTU, Singapore

Key Control Security of
Key Derivation Functions from

NIST SP 800-108

Tetsu Iwata
Nagoya University

The 1st Workshop on
Generic Attacks and Proofs in Symmetric Cryptography, GAPS 2025

September 5, 2025, NTU, Singapore

and PRF

This Talk

• based on:
• Ritam Bhaumik, Avijit Dutta, Akiko Inoue, Tetsu Iwata, Ashwin Jha, Kazuhiko

Minematsu, Mridul Nandi, Yu Sasaki, Meltem Sonmez Turan, and Stefano Tessaro,
Cryptographic Treatment of Key Control Security -- In Light of NIST SP 800-108

• CRYPTO 2025
• ePrint 2025/1123

• Ritam Bhaumik, Avijit Dutta, Tetsu Iwata, Ashwin Jha, Kazuhiko Minematsu,
Mridul Nandi, Yu Sasaki, Meltem Sonmez Turan, and Stefano Tessaro,
A Note on Feedback-PRF Mode of KDF from NIST SP 800-108

• already sent to ePrint, will appear soon

3

Outline

• Key Derivation Functions
• Security Requirements for KDFs
• Formalization of Key Control Security
• Proofs
• Attacks
• Summary

4

Key Derivation Functions, KDFs

• Key derivation function
• outputs multiple session keys/user keys 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 from a single master key 𝐾𝐾𝐼𝐼𝐼𝐼
• takes other inputs

• Significantly used in practice
• various OSs, HSM, cryptographic libraries, TEE, ...

• Various design approaches
• HKDF [Kra10]

• the extract-then-expand approach
• Chuah et al. [WDNS12, WDS13]
• Ones rely on passwords or biometrics [PJ16, KAA21, SPL+18]

• low entropy secret

5

KDFs in NIST SP 800-108r1

• We focus on KDFs in NIST SP 800-108r1 [Che22]
• KDFs from a PRF
• The input key 𝐾𝐾𝐼𝐼𝐼𝐼 is a cryptographic key

• 𝐾𝐾𝐼𝐼𝐼𝐼 is a “cryptographically strong key,” no extraction step
• Other inputs:

• 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿: a bit string identifies the purpose of 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂
• “encryption”, “authentication”,...

• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: a bit string containing the info. related 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂
• identities of the users, nonces, ...

• 𝐿𝐿: bit length of 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂

6

[Che22] Lily Chen. Recommendation for key derivation using pseudorandom functions. NIST Special Publication NIST SP 800-108r1, 2022.

KDFs in NIST SP 800-108r1

• NIST SP 800-108r1 defines KDFs based on PRFs
• PRFs: KMAC, CMAC, HMAC

• KDFs in NIST SP 800-108r1
• KDF-KMAC
• Three modes for CMAC and HMAC

• Counter mode, CTR
• Feedback mode, FB
• Double-pipeline mode, DP

• Three “strengthened” modes for CMAC
• stCTR, stFB, stDP

7

KDF-KMAC

• based on KMAC as a PRF
• KMAC is a variable-output length PRF

8

CTR-PRF

• PRF in Counter mode, PRF is CMAC or HMAC
• There is also a “strengthened version” for CMAC, called stCTR

9

FB-PRF

• PRF in Feedback mode, PRF is CMAC or HMAC
• There is also a “strengthened version” for CMAC, called stFB

10

DP-PRF

• PRF in Double-Pipeline mode
• Combination of CTR and FB modes
• PRF is CMAC or HMAC
• 𝐴𝐴 0 = data = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 || 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 || 𝐿𝐿
• There is also a “strengthened version”

for CMAC, called stDP

11

KDFs in NIST SP 800-108r1

• Originally published in 2008
• Revised in 2022

• KDF-KMAC was added
• An issue of the key control security of CMAC was discussed

12

Outline

• Key Derivation Functions
• Security Requirements for KDFs
• Formalization of Key Control Security
• Proofs
• Attacks
• Summary

13

Security Requirements for KDFs

• A KDF itself is a PRF (for random and secret 𝐾𝐾𝐼𝐼𝐼𝐼)
• See [SWG25], covering the PRF proofs of {CTR, FB, DP}-{CMAC, HMAC}
• [SWG25] also covers analyses of collision resistance and preimage resistance

14

[SWG25] Yaobin Shen, Lei Wang, Dawu Gu. Security Analysis of NIST Key Derivation Using Pseudorandom Functions. ePrint 2025/815

Security Requirements for KDFs

• Key Control Security [Che22]:
• When multiple parties contribute to the input of a key-derivation process, key-

control security (or key-control resistance) is attained when the parties have
assurance that (even with knowledge of the input key 𝐾𝐾𝐼𝐼𝐼𝐼) no single party (or
proper subset of the contributors) can manipulate the process in such a way as to
force output keying material to a preselected value (regardless of the
contributions of the others) to the detriment of any applications relying on that
keying material.

• Added in the revision in 2022 based on
the public comments from Amazon team

15

Key Control Security [Che22]

• The adversary knows 𝐾𝐾𝐼𝐼𝐼𝐼
• KCS is in a known-key setting

• The goal is to force 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 being a preselected value
• e.g., a weak key for some cipher

• by controlling 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
• 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐿𝐿 are usually determined by a higher protocol

16

Example: KCS of CTR-PRF

• KDF with MAC as a PRF, MAC built on a block cipher of 𝑛𝑛 = 128 bits
• Consider the case 𝐿𝐿 = 128; the counter is fixed to 𝑖𝑖 = 1
• In what follows, we write 𝐾𝐾 for 𝐾𝐾𝐼𝐼𝐼𝐼, and 𝑇𝑇 for the output of MAC

17

Example: KCS of CTR-PRF

• 𝐾𝐾 is given
• Assume that 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐿𝐿 are fixed and given, and are not under the control of the

adversary
• If the adversary outputs 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 such that the output is a preselected value 𝑇𝑇 = 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂,

then the attack succeeds
• The KDF is insecure in terms of KCS

• Similar to a preimage attack w/ known key
• 𝑇𝑇 can be preselected, and a part of the input is fixed

18

Example: KCS of CTR-PRF

19

• 𝐾𝐾′ = 2 ⋅ 𝐸𝐸𝐾𝐾 0𝑛𝑛

• Format specified in NIST SP 800-108r1
• 1 2 ∥ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∥ 0x00 ∥ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∥ 𝐿𝐿 2

• 𝑀𝑀 1 = 1 2 ∥ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∥ 0x00 ∥ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[1]
• 𝑀𝑀 2 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2
• 𝑀𝑀 3 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3 ∥ 128 2

• 𝑇𝑇 is fixed to some preselected value
• to a weak key of cipher, by the adversary

Example: KCS of CTR-PRF

20

• 2 KCS attacks in [Che22] (by Amazon team) that use 2 blocks
• 3-block attack

1. Fix 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[1]
2. Fix 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[3]
3. Compute 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[2]

• A KCS attack with 𝑂𝑂 1 complexity
• NIST: Use KMAC or HMAC,

or “strengthened modes”

Case 𝐿𝐿 = 2𝑛𝑛

21

• Case 𝐿𝐿 = 2𝑛𝑛
• e.g., Even-Mansour cipher

Case 𝐿𝐿 = 2𝑛𝑛

22

• The complexity of a generic attack is 22𝑛𝑛

• Can you do it better?
• 2𝑛𝑛, 2𝑛𝑛/2, or a constant time?

Case 𝐿𝐿 = 2𝑛𝑛

23

1. Store 264 values of 𝑌𝑌 1 ⊕𝑌𝑌′[1] for 264 values of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[1]
2. Store 264 values of 𝑋𝑋 2 ⊕𝑋𝑋′[2] for 264 values of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[3]
3. Find 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[1] and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[3] such that 𝑌𝑌 1 ⊕𝑌𝑌′ 1 = 𝑋𝑋 2 ⊕𝑋𝑋′[2]
4. Compute 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2 = 𝑌𝑌 1 ⊕𝑋𝑋 2 (= 𝑌𝑌′ 1 ⊕𝑋𝑋′ 2)

Case 𝐿𝐿 = 2𝑛𝑛

24

• MitM attack, a KCS attack with 2𝑛𝑛/2 = 264 complexity, possibly the best attack
• Assuming that 264 is big, is this a secure usage of KDF-CMAC?

Case 𝐿𝐿 = 2𝑛𝑛

25

• MitM attack, a KCS attack with 2𝑛𝑛/2 = 264 complexity, possibly the best attack
• Assuming that 264 is big, is this a secure usage of KDF-CMAC?
• No, it is easy to compute 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 such that, e.g., 𝑇𝑇,𝑇𝑇′ = (0𝑛𝑛,𝑇𝑇𝑇) efficiently

• by first ignoring 𝑇𝑇𝑇
• A “weak-key” of, e.g., Even-Mansour cipher

Key Control Security

26

• Key control security is close to the preimage security in a known-key setting, but the
target image can be selected by the adversary and the targets can be exponentially
large

• Also close to multi-target preimage security
• A formal security definition of KCS is missing
• Our contributions

• Formalize a security definition for KCS
• Analysis of KDFs in NIST SP 800-108

• proofs that KDF-KMAC and {CTR, FB, DP}-HMAC are secure
• birthday bound attacks on {DP, stCTR, stFB, stDP}-CMAC

• constant time attacks on {CTR, FB}-CMAC by Amazon team

Outline

• Key Derivation Functions
• Security Requirements for KDFs
• Formalization of Key Control Security
• Proofs
• Attacks
• Summary

27

Our Formalization

• Assume the use of an ideal primitive 𝑃𝑃, could be a random oracle, or an ideal cipher
• The first approach

• A challenger selects 𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑙𝑙, 𝐿𝐿 and gives it to 𝐴𝐴: 𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑙𝑙, 𝐿𝐿 → 𝐴𝐴
• 𝐴𝐴𝑃𝑃 chooses 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂
• A challenger selects 𝐾𝐾𝐼𝐼𝐼𝐼 and gives it to 𝐴𝐴: 𝐾𝐾𝐼𝐼𝐼𝐼 → 𝐴𝐴
• 𝐴𝐴𝑃𝑃 chooses 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
• 𝐴𝐴 wins if 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 = KDF(𝐾𝐾𝐼𝐼𝐼𝐼, 𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐿𝐿)

• A naïve approach following [Che22]
• Does not cover a large set of target images

28

Our Formalization

• Assume the use of an ideal primitive 𝑃𝑃, could be a random oracle, or an ideal cipher
• The second approach

• A challenger selects 𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑙𝑙, 𝐿𝐿 and gives it to 𝐴𝐴: 𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑙𝑙, 𝐿𝐿 → 𝐴𝐴
• 𝐴𝐴𝑃𝑃 chooses a predicate 𝑝𝑝
• A challenger selects 𝐾𝐾𝐼𝐼𝐼𝐼 and gives it to 𝐴𝐴: 𝐾𝐾𝐼𝐼𝐼𝐼 → 𝐴𝐴
• 𝐴𝐴𝑃𝑃 chooses 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
• 𝐴𝐴 wins if 𝑝𝑝(𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂) = 1 for 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 = KDF(𝐾𝐾𝐼𝐼𝐼𝐼, 𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐿𝐿)

• A predicate 𝑝𝑝: 0,1 𝐿𝐿 → {0,1} specifies a set of target images
• 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 is a target image iff 𝑝𝑝(𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂) = 1

• can handle a large set of target images

29

Our Formalization

• Stronger adversaries could choose 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿 , and could even affect the generation
process of 𝐾𝐾𝐼𝐼𝐼𝐼

• Treat 𝐾𝐾𝐼𝐼𝐼𝐼 as an oracle-dependent adversarial source of randomness
• follows [CDKT19] analyzing random number generators

• We let the adversary choose 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿 and 𝐾𝐾𝐼𝐼𝐼𝐼
• with a suitable restriction;

• 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐿𝐿 must be in a suitable range
• 𝐾𝐾𝐼𝐼𝐼𝐼 has a sufficient average min-entropy

30

Our Formalization: KCS Game

• Assume the use of an ideal primitive 𝑃𝑃, could be a random oracle, or an ideal cipher
• Our formalization: 𝐴𝐴 = (𝐴𝐴cmt,𝐴𝐴fnd) (commit-then-find game)

• 𝐴𝐴cmt𝑃𝑃 chooses 𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑙𝑙, 𝐿𝐿,𝑝𝑝
• 𝐴𝐴cmt𝑃𝑃 chooses 𝐾𝐾𝐼𝐼𝐼𝐼

• with a restriction �H∞(𝐾𝐾𝐼𝐼𝐼𝐼 ∣ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿,𝑝𝑝) ≥ 𝑘𝑘
• 𝐴𝐴fnd𝑃𝑃 chooses 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
• 𝐴𝐴 wins if 𝑝𝑝(𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂) = 1 for 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 = KDF(𝐾𝐾𝐼𝐼𝐼𝐼, 𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐿𝐿)

• �H∞(𝐾𝐾𝐼𝐼𝐼𝐼 ∣ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿,𝑝𝑝) ≥ 𝑘𝑘: 𝐾𝐾𝐼𝐼𝐼𝐼 has a sufficient
average min-entropy, given (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿,𝑝𝑝)

• still in a known-key setting, since 𝐾𝐾𝐼𝐼𝐼𝐼 has randomness

31

• �H∞(𝐾𝐾𝐼𝐼𝐼𝐼 ∣ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿, 𝑝𝑝) ≥ 𝑘𝑘
• Please see the paper for a more precise definition

Our Formalization: KCS Game

32

Results on KDFs in NIST SP 800-108

33

• KDF-KMAC is secure
• {CTR, FB, DP}-HMAC are secure up to the birthday bound (w.r.t. the output len. of the

hash function used)

Results on KDFs in NIST SP 800-108

34

• {CTR, FB}-CMAC are known to be insecure [Che22]
• {DP, stCTR, stFB, stDP}-CMAC admit attacks with the birthday bound complexity,

plus a small cost

Outline

• Key Derivation Functions
• Security Requirements for KDFs
• Formalization of Key Control Security
• Proofs
• Attacks
• Summary

35

Results on KDFs in NIST SP 800-108

36

• KDF-KMAC is secure
• {CTR, FB, DP}-HMAC are secure up to the birthday bound (w.r.t. the output len. of the

hash function used)

• bad1: 𝐾𝐾𝐼𝐼𝐼𝐼 is one of 𝐾𝐾𝑖𝑖’s in the commit stage
• bad2: 𝑝𝑝 𝑌𝑌𝑖𝑖 = 1 for some 𝑌𝑌𝑖𝑖 in the find state
• Pr[bad1 ∣ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿, 𝑝𝑝] is small from the randomness of 𝐾𝐾𝐼𝐼𝐼𝐼
• Pr[bad2 ∣ ¬bad1 & 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿,𝑝𝑝] is small since 𝑌𝑌𝑖𝑖 = uniform

KDF-HMAC Is KCS-Secure

37

Outline

• Key Derivation Functions
• Security Requirements for KDFs
• Formalization of Key Control Security
• Proofs
• Attacks

• KCS Attack against DP-CMAC
• Distinguishing Attack on FB-PRF

• Summary

38

KCS Attack against DP-CMAC (Birthday)

39

𝐴𝐴 0 = data = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 || 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 || 𝐿𝐿

KCS Attack against DP-CMAC (Birthday)

1. Fix 𝐴𝐴[1]
2. Store 264 values of

𝑋𝑋△ ⊕ 𝑋𝑋▽for 264 values of
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡1

3. Store 264 values of
𝑌𝑌△ ⊕ 𝑌𝑌▽for 264 values of
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡3

4. Find 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡1 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡3
such that 𝑋𝑋△ ⊕ 𝑋𝑋▽= 𝑌𝑌△ ⊕ 𝑌𝑌▽

5. Compute 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 = 𝑋𝑋△ ⊕
𝑌𝑌△(= 𝑋𝑋▽ ⊕ 𝑌𝑌▽)

40

Distinguishing Attack on FB-PRF (ePrint)

• Flexibility in the specification
• IV can be public input, secret input, or even empty, IV len. is also flexible
• the use of block counter is optional

41

Distinguishing Attack on FB-PRF (ePrint)

• Consider the case
• IV is a public input and IV len = output len of PRF
• block counter is not used

42

Distinguishing Attack on FB-PRF (ePrint)

• Assume the adversary has 𝐾𝐾𝑂𝑂𝑂𝑂𝑂𝑂 for some 𝐼𝐼𝐼𝐼, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
• Then the adversary immediately knows the first 2ℎ bits of 𝐾𝐾′𝑂𝑂𝑂𝑂𝑂𝑂 for

𝐼𝐼𝐼𝐼′, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 with 𝐼𝐼𝑉𝑉′ = 𝐾𝐾[1] are 𝐾𝐾′ 1 ∥ 𝐾𝐾′ 2 = 𝐾𝐾 2 ∥ 𝐾𝐾[3]

43

Distinguishing Attack on FB-PRF (ePrint)

• Works for any PRF, many ways to avoid the vulnerability. The attack does not work if:
• IV len != output len of PRF
• the protocol restricts the selection of IV to a small set of possible values
• the block counter is used
• IV is derived from Context as in the strengthened mode

44

Summary 1

• Formalization of key control security
• close to (multi-target) preimage security
• the targets can be preselected by the adversary
• Our formalization covers strong adversaries that can choose various inputs, with

suitable restrictions
• Analyzed the security of KDFs in NIST SP 800-108

• Proofs for KMAC and HMAC-based KDFs, up to the birthday bound
• Attacks for CMAC-based KDFs, birthday complexity (plus a small cost)

• Proofs are missing
• KCS has just been formalized, lots of open problems

• Stronger notion, proofs of KDFs based on various PRFs, attacks of KDFs based on
various PRFs

45

Summary 2

• A particular instance of FB-PRF is PRF-insecure
• There are PRF-secure instances [SWG25], but not all

• So, be careful when you use it

46

	Key Control Security of�Key Derivation Functions from NIST SP 800-108
	Key Control Security of�Key Derivation Functions from NIST SP 800-108
	This Talk
	Outline
	Key Derivation Functions, KDFs
	KDFs in NIST SP 800-108r1
	KDFs in NIST SP 800-108r1
	KDF-KMAC
	CTR-PRF
	FB-PRF
	DP-PRF
	KDFs in NIST SP 800-108r1
	Outline
	Security Requirements for KDFs
	Security Requirements for KDFs
	Key Control Security [Che22]
	Example: KCS of CTR-PRF
	Example: KCS of CTR-PRF
	Example: KCS of CTR-PRF
	Example: KCS of CTR-PRF
	Case 𝐿=2𝑛
	Case 𝐿=2𝑛
	Case 𝐿=2𝑛
	Case 𝐿=2𝑛
	Case 𝐿=2𝑛
	Key Control Security
	Outline
	Our Formalization
	Our Formalization
	Our Formalization
	Our Formalization: KCS Game
	Our Formalization: KCS Game
	Results on KDFs in NIST SP 800-108
	Results on KDFs in NIST SP 800-108
	Outline
	Results on KDFs in NIST SP 800-108
	KDF-HMAC Is KCS-Secure
	Outline
	KCS Attack against DP-CMAC (Birthday)
	KCS Attack against DP-CMAC (Birthday)
	Distinguishing Attack on FB-PRF (ePrint)
	Distinguishing Attack on FB-PRF (ePrint)
	Distinguishing Attack on FB-PRF (ePrint)
	Distinguishing Attack on FB-PRF (ePrint)
	Summary 1
	Summary 2

