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An authenticated encryption scheme is deemed secure if:

1. an adversary cannot learn anything about the message from a ciphertext

2. an adversary cannot forge a valid ciphertext

Real World Ideal World




Attacks have shown that we sometimes require more properties from an AE scheme

» Fast message franking attack?
» Subscribe with Google attack?®
» Partitioning oracle attack3

» possibly more attacks in the future

'Dodis et al. “Fast Message Franking: From Invisible Salamanders to Encryptment”.
In: CRYPTO 2018. 2018.

2Albertini et al. “How to Abuse and Fix Authenticated Encryption Without Key
Commitment”. In: USENIX 2022. 2022.

3Len, Grubbs, and Ristenpart. “Partitioning Oracle Attacks”. In: USENIX 2021. 2021.
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Partitioning Oracle Attack:

Assume that A has a list of leaked keys which contains the correct key

» Split the list into two sub-lists Ly and L,
» Find a ciphertext that decrypts validly under the keys in L; and to L under the keys in L,
» Based on the response, A knows if the correct key is in Ly or L

P repeat using the list containing the correct key

Problem: A can construct ’KO Ki Kz K3 Ky Ks K K7‘

ciphertexts that decrypt under
multiple keys ’Ko Ki Kz K3‘ ’K4 Ks Ko K7‘

Solution: committing security

k] [KK) [Kako] [KoF




Game CMTgk Game CMT

10 (K N A M), (KN, A M) < A 10 (KN, A M), (K, N, A, M) < A()
2: ifFK=K 2: if (K,N,A) =(K,N,A)

3: return 0 3: return 0

4: (C,T)<« ENc(K,N,A, M) 4: (C,T)<«+ ENC(K,N,A, M)

5: (C,T)+ Enc(K,N,A, M) 5: (C,T)<« Enc(K,N,A, M)

6: return ((C,T)=(C, T)) 6: return ((C,T)=(C,T))

Security games CMTx (left) and CMT (right).
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Generic Composition: Overview

There are three methods of generic composition:

1. Encrypt-and-MAC
2. Encrypt-then-MAC
3. MAC-then-Encrypt

*Namprempre, Rogaway, and Shrimpton. “Reconsidering Generic Composition”. In:
EUROCRYPT 2014. 2014.



Generic Composition: Overview

There are three methods of generic composition:

1. Encrypt-and-MAC
2. Encrypt-then-MAC
3. MAC-then-Encrypt

We focus on the so-called N-schemes?*

» construct an AE scheme from a nonce-based encryption scheme and a MAC

*Namprempre, Rogaway, and Shrimpton. “Reconsidering Generic Composition”. In:
EUROCRYPT 2014. 2014.
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Generic Composition: Overview

N1 (Encrypt-and-MAC) N2 (Encrypt-then-MAC) N3 (MAC-then-Encrypt)
Ke Ke Ke
N | N | N T |
Enc |[—C Enc T C Enc |—C
Tag |— T \— Tac |— T Tac
Al T A r Al
K,-,-, Km K,,-,

We give positive results for N1 and negative results for N2



Committing Security of N1 (Encrypt-and-MAC)

N1 (E d-MAC Theorem (Committing Security of N1)
1 t- _
(Encrypt-an ) Let SE be a symmetric encryption scheme and MAC be a MAC.

Ke Let further N1[SE, MAC] be the authenticated encryption
N | scheme obtained via the N1 construction using SE and MAC.
T» Enc |— C Then for any adversary A there exist adversaries B and € such
that
il
{ Tac |— T AdvSiTSs vac (A) < AdvEE™(B) + Advif(€).




Committing Security of N1 (Encrypt-and-MAC)

N1 (E d-MAC Theorem (Committing Security of N1)
1 t- _
(Encrypt-an ) Let SE be a symmetric encryption scheme and MAC be a MAC.

Ke Let further N1[SE, MAC] be the authenticated encryption

N | scheme obtained via the N1 construction using SE and MAC.

Enc |— C Then for any adversary A there exist adversaries B and € such

that

il

Tac |— T AdvSiTSs vac (A) < AdvEE™(B) + Advif(€).
Al

Kin

Committing security of N1 reduces to collision resistance of the underlying MAC and a weak
form of collision resistance of the underlying encryption



Committing Security of N1 (Encrypt-and-MAC)

N1 (Encrypt-and-MAC)

Ke
l

ENc

TAG

Game CR Game wCR

(K, X),(K,X) < A() (K,N,M),(K,N, M) + A()

if (K, X) = (K, X) if K=KV (N,M)# (N, M)
return 0 return 0

T « Tac(K, X) C « Enc(K, N, M)

T + Tac(K, X) C + Exc(K, N, M)

return (T =T) return (C = C)

Security game CR for MACs and wCR for symmetric encryption.
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N1 (Encrypt-and-MAC)

Ke

N |
ENc

TAG

Al T

Km

Game CR

Game wCR

(K, X), (K, X) < A()

if (K,X)=(K,X)
return 0

T + Tac(K, X)

T + Tac(K, X)

return (T =T)

(K, N, M), (K, N, M) < A()

if K=KV (N,M) % (N, M)
return 0

C + Enc(K, N, M)

C + Exc(K, N, M)

return (C = C)

Security game CR for MACs and wCR for symmetric encryption.

Weak collision-resistant encryption: adversary needs to find distinct keys and one
nonce-message pair that result in the same ciphertext

» finding arbitrary collisions (for tidy encryption schemes) is easy



Committing Security of N1 (Encrypt-and-MAC)

Proof idea: for the output ((Ke, Kin), N, A, M), ((Ke, Km), N, A, M) by A, distinguish between

)

the following cases:



Committing Security of N1 (Encrypt-and-MAC)

Proof idea: for the output ((Ke, Kin), N, A, M), ((Ke, Km), N, A, M) by A, distinguish between

)

the following cases:

1. Ko # Ke A(N, M) = (N, M):
In this case, A breaks wCR security of the underlying encryption



Committing Security of N1 (Encrypt-and-MAC)

Proof idea: for the output ((Ke, Kin), N, A, M), ((Ke, Km), N, A, M) by A, distinguish between

)

the following cases:

1. Ko # Ke A(N, M) = (N, M):
In this case, A breaks wCR security of the underlying encryption

2. Ke =KoV (N, M) # (N, M):
In this case, it holds that (K, N, A, M) # (K, N, A, M) which implies that A
breaks CR security of the MAC



Committing Security of N1 (Encrypt-and-MAC)

Are there schemes that satisfy the required properties?

5Degabriele, Janson, and Struck. “Sponges Resist Leakage: The Case of Authenticated
Encryption”. In: ASIACRYPT 2019. 2019.
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Committing Security of N1 (Encrypt-and-MAC)

Are there schemes that satisfy the required properties?

We show that the encryption scheme and MAC of SLAE® (a derivate of ISAP) achieve wCR
and CR, respectively

5Degabriele, Janson, and Struck. “Sponges Resist Leakage: The Case of Authenticated
Encryption”. In: ASIACRYPT 2019. 2019.

10



Committing Attack against N2 (Encrypt-then-MAC)

N2 (Encrypt-then-MAC)

TaGc (— T

|

Theorem (Committing Security of N2)

Let SE be a symmetric encryption scheme and MAC be a
MAC. Let further N2 [SE, MAC] be the authenticated
encryption scheme obtained via the N2 construction using
SE and MAC. Then there exists an adversary A such that

Advl(\:I'\Q/l[gE,l\rlAc] (‘A) =1.

11



Committing Attack against N2 (Encrypt-then-MAC)

Theorem (Committing Security of N2)
N2 (Encrypt-then-MAC)

Let SE be a symmetric encryption scheme and MAC be a

M Ke MAC. Let further N2 [SE, MAC] be the authenticated
i encryption scheme obtained via the N2 construction using
ENc ¢ SE and MAC. Then there exists an adversary A such that
Y AdviME v (A) =1.
Tac |— T N2[SE,MAC]
A | !
K

Gist: since N2 authenticates the ciphertext (not the message like N1), finding a ciphertext
collision is sufficient

» not a restricted collision as was the case for N1

11
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Adversary A
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Committing Attack against N2 (Encrypt-then-MAC)

ENc

Adversary A

Ke:N7M<—$’C><N><M
C < SE.ENC(K., N, M)
Ke s K\{K.}

M + SE.DEC(Ke, N, C) // by tidyness: C = Se.Exc(Ke, N, M)

12



Committing Attack against N2 (Encrypt-then-MAC)

N }je Adversary A
7_ Ko, N, M s K x N x M
Enc C
Mf £<— SE.ENC(Ke, N, M)
Ke s K\{Ke}
7 M < SE.DEC(Ke, N, C) / by tidyness: C = Se.ENc(K., N, M)
Al KTm (Km, A) <35 K x A
return ((Ke, Km), N, A, M), ((Ke, Km), N, A, M)
Ke
N |
T_ Enc C
L
Tac |— T
AJ !

12



Committing Attack against N2 (Encrypt-then-MAC)

N }je Adversary A
Ke:N7M<—$’C><N><M
ENe ¢ C SE.E Ko, N, M
+ SE.ENC(K., N,
" < ( )
Ke s K\{Kc}
N e— 7 M < SE.DEC(Ke, N, C) / by tidyness: C = Se.ENc(K., N, M)
A 1

(Km, A) < K x A
return ((K€7 Km)7 N7 A7 M)7 ((?E’ Km)7 N7 A,W)

» Attack exploits independent keys for underlying

Enc C
encryption scheme and MAC

L

N

|
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Committing Attack against N2 (Encrypt-then-MAC)

L

N

ENc

|

Adversary A
Ke:N7M<—$’C><N><M

C
C < SE.ENC(K., N, M)
Ke s K\{Ke}

M + SE.DEC(Ke, N, C) // by tidyness: C = Se.Exc(Ke, N, M)
(Km, A) < K x A
return ((K€7 Km)7 N7 A7 M)7 ((?E’ Km)7 N7 A,W)

» Attack exploits independent keys for underlying

C
encryption scheme and MAC
» Attack does not work if keys are derived via a
Tac

pseudorandom generator from some master key

12



Committing Attack against N2 (Encrypt-then-MAC)

N }je Adversary A
Ke:N7M<—$’C><N><M
ENe ¢ C SE.E Ko, N, M
+ SE.ENC(K., N,
" < ( )
Ke s K\{Kc}
I 7 M < SE.DEC(Ke, N, C) / by tidyness: C = Se.ENc(K., N, M)
A 1

(Km, A) < K x A
return ((K€7 Km)7 N7 A7 M)7 ((?E’ Km)7 N7 A,W)

Exc c » Attack exploits independent keys for underlying
encryption scheme and MAC
» Attack does not work if keys are derived via a

pseudorandom generator from some master key

L

N

|

K., » Attack also does not carry over to more practical
AE schemes 12
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NIST Lightweight Cryptography (LWC) Standardization

Timeline
» August 2018:
Call for algorithms
» April 2019:
56 round-1 candidates
» August 2019:
32 round-2 candidates
» March 2021:
10 finalists

13



NIST Lightweight Cryptography (LWC) Standardization

Timeline Finalists:
» August 2018: 1. AscoN
Call for algorithms 2. ELEPHANT
. . 3. GIFT-COFB
> April 2019: ) 4. GRAIN-128AEAD
56 round-1 candidates 5. ISAP
» August 2019: 6. PHOTON-BEETLE
32 round-2 candidates 7. RomuLUs
_ 8. SCHWAEMM
> Math 2021' 9. TINYJAMBU
10 finalists 10. XOODYAK

13



NIST Lightweight Cryptography (LWC) Standardization

Timeline Finalists:
» August 2018: 1. AscoN
Call for algorithms 2. ELEPHANT
. . 3. GIFT-COFB
> April 2019: ) 4. GRAIN-128AEAD
56 round-1 candidates 5. ISAP
» August 2019: 6. PHOTON-BEETLE
32 round-2 candidates 7. RomuLUs
_ 8. SCHWAEMM
> Math 2021' 9. TINYJAMBU
10 finalists 10. XOODYAK

» February 2023:
ASCON selected to be standardized

13



NIST Lightweight Cryptography (LWC) Standardization

Timeline Finalists:
» August 2018: 1. AscoN
Call for algorithms 2. ELEPHANT
. 3. GIrT-COFB
> .
April 2019: ) 4. GRAIN-128AEAD
56 round-1 candidates 5. ISAP
» August 2019: 6. PHOTON-BEETLE
32 round-2 candidates 7. RoMULUS
_ 8. SCHWAEMM
> Math 2021' 9. TINYJAMBU
10 finalists 10. XOODYAK

» February 2023:
ASCON selected to be standardized

We analyze the committing security of all finalists except GRAIN-128AEAD (which uses a
dedicated design)

» we focus on the modes of operation, assuming underlying components to be ideal 13
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Encrypt-then-MAC AE schemes
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NIST LWC Finalists: Classification

Encrypt-then-MAC AE schemes

M
N ENCy L, C
K l ENCg’ }—' T
A

ELEPHANT and ISAP follow this design

» difference to N2: only a single key

Context-pre-Processing AE schemes

]l ENCJV[ }—> (C7 T)

AscoN, GiIFT-CorB, PHOTON-BEETLE,
RomuLus, ScCHWAEMM, TINYJAMBU, and
X00DYAK follow this design

T X = >

» dashed/dotted line only present in some
schemes

Main focus of this talk: Encrypt-then-MAC AE schemes

14
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Results: Overview

» Attacks with minimal costs against four

schemes (X): Scheme CMT
RomuLus, ELEPHANT, GIFT-COFB, and ROMULUS X
PHOTON-BEETLE ELEPHANT X
> Attacks with significantly less than 24 queries G1rT-COFB X
against two schemes (4): PHOTON-BEETLE X
TINYJAMBU and XOODYAK TINY JAMBU *
» Proofs showing about 64-bit committing XOODYAK +
security for three schemes (v):
y ) ASCON v
ASCON, ISAP, and SCHWAEMM
Isap v
SCHWAEMM v

15



Results: Overview

Attacks boil down to one of the following properties:

Scheme CMT
» The whole state is adversary-controlled ROMULUS X
(RomuLus, ELEPHANT, GIFT-COFB) ELEPHANT X
P true for the initial state CGirT-COFB X
(PHOTON-BEETLE) PHOTON-BEETLE X
» The adversary-controlled state is too large TINYJ AMBU -
(XoopyaK) XOODYAK +

» The tag is too short
(TINYJAMBU)

16



ELEPHANT

» ELEPHANT is based on a public
permutation

» The permutation is used in a : Ll 9 TEMY i L

tweakable Even-Mansour style maski (1)

L

» Upper part: encryption M, H? M, ﬂﬂf
» Lower part: authentication? Y G C.

_________________________

Aa Cl
a—1,0 i 0,2 i
L>ITEM$2 L»ITEMEQ ‘

_— TEM&)
?A; contains the nonce N.



ELEPHANT

» ELEPHANT is based on a public
permutation

» The permutation is used in a
tweakable Even-Mansour style

» Upper part: encryption

v

Lower part: authentication?
» Observations:

1. via Ay, we have full control
over the state during
authentication

2. via the message, we have full
control over the ciphertext
during encryption

?A; contains the nonce N.

LI

’_,,,
maskigj ij
L ¢

M1 —D M/A —D
I v
e Y __________ ] Cl C;l
Aq Ay A G
1,0 a—1,0 i 0,2 i
: L>ITEM$2 L>ITEM$2‘
i A A
U U U

17



ELEPHANT

Committing attack:

1. Choose (K, N, A, M) and compute the ciphertext (C, T)
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ELEPHANT
Committing attack:

1. Choose (K, N, A, M) and compute the ciphertext (C, T)
2. Choose K, As, , A, and compute the states Y and S

A Ao G

Az
1,0 | a—1,0 | 0,2 | y-1,2
L ol e
| |

A A

18



ELEPHANT

Committing attack:
1. Choose (K, N, A, M) and compute the ciphertext (C, T)
, A, and compute the states Y and S

2. Choose K, A,, ...
3. Set A; + Y @ S (note that this also determines the nonce N)

Ay A A, G o
1,0 i a—1,0 \ 0,2 i 1,2 i
§ RS ik Tl T
vl ¥
S

L»!TEMQ
K
18

T



ELEPHANT

Committing attack:
1. Choose (K, N, A, M) and compute the ciphertext (C, T)
2. Choose K, Ay, ..., A,, and compute the states Y and S
3. Set A; + Y @ S (note that this also determines the nonce N)
4. Choose M that, using K and N, encrypts to C

Ay A Aq G G
1,0 | a—1,0 | 0,2 i v
{En Tl R T
Vel X
0,0 S

L»!TEMQ
K

T
18




ELEPHANT: Committing Attack

Theorem

Consider ELEPHANT as shown above. Let TEM be modeled as an ideal tweakable cipher E.
Then there exists an adversary A, making q queries to E, such that

AdvgyE-II—’HANT(‘A) =1,

where q = 2j1 + 2y + « + @. Here, pu is the number of message blocks while computing
ENCy and v is the number of ciphertext blocks while computing ENCy.® Furthermore, o
and @ are the number of associated data blocks for the two tuples that A outputs.

SNote that u and « might not be the same.

19



ISAP is based on a public
permutation

It features a re-keying
function IsAP.RK to
achieve resilience against
side-channel leakage

Upper part: encryption

Lower part: authentication

MM —0— CM

PE

M; —®— G
'
n”
PE
@2
|
N A; G
‘ﬁ’ T’Z n”
f
PH PH PH
[ .
\% o011

20



Isapr: Re-Keying Function

» Re-Keying function ISAP.RK is a plain sponge construction
» Core property: rate is set to 1 to minimize the effect of side-channel leakage

Xi Xy K
M Il M |
K — - —d s
PK PB PK
\Y :
n—r <1 1
—/ —/

21



pP: Committing Security

Proof idea:

» model ISAP as a plain sponge with an increased rate to handle its special features
(re-keying function and domain separation)

» Collision resistance of the plain sponge construction yields committing security

N Ai C, T
aD. yany ;
K n n Y * " K
P2 P2 P2 P2
‘ i S 2 2
—
\%
N A; C, Z = (X @ Ka) | 0* T
l | el
5] D D 52}
7 7 7 % %
P2 P2 P2 P2
@ % kS ES
—

0" | IV 22



Isap: Committing Security

Theorem

Consider ISAP as shown above. Let p; and p, be modeled by ideal permutations p; and pa,

respectively. Then for any adversary A making q1 and q» queries to p; and p», respectively, it
holds that

cMT g —1)  qi(gr+1)  qo(ge—1) (g2 +1)
AdvISAP (‘A) < ok + on—k + 2k 2n7max{n,rg+1} :

23
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Isap: Committing Security

Theorem

Consider ISAP as shown above. Let p; and p, be modeled by ideal permutations p; and pa,

respectively. Then for any adversary A making q1 and q» queries to p; and p», respectively, it
holds that

cMT g —1)  qi(gr+1)  qo(ge—1) (g2 +1)
AdvISAP (‘A) < ok + on—k + 2k 2n7max{n,rg+1} :

Dominant terms (for NIST parameter sets): ql(g{fl) and qz(gffl)

» Committing security can be increased by increasing x (length of tags and session keys)

» but only up to k = n/2 (at which point the other terms become dominant)

23
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Zero-Padding

Prepend zeros to the message prior to encryption:

zP-AE.ENC(K, N, A, M) = AE.ENC(K, N, A, 0% || M)

"Naito, Sasaki, and Sugawara. “Commiting Security of Ascon: Cryptanalysis on
Primitive and Proof on Mode”. In: ToSC 2023 (4). 2023.
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Zero-Padding

Prepend zeros to the message prior to encryption:

zP-AE.ENC(K, N, A, M) = AE.ENC(K, N, A, 0% || M)

“Lightweight” method to achieve CMTk security

» neither claimed nor proven to work for all schemes

» Zero-padding was shown to improve CMT security of ASCON’

"Naito, Sasaki, and Sugawara. “Commiting Security of Ascon: Cryptanalysis on
Primitive and Proof on Mode”. In: ToSC 2023 (4). 2023.

24



Zero-Padding

We ask two questions regarding zero-padding:
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Zero-Padding

We ask two questions regarding zero-padding:

1. Can we achieve CM Ty security for the schemes that are not CMT secure?

2. Can we increase CMT security for the secure schemes?

25



Zero-Padding: PHOTON-BEETLE and XOODYAK

Context-pre-Processing AE schemes

l ENcy }—> (C T)

T X = >
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Zero-Padding: PHOTON-BEETLE and XOODYAK

Context-pre-Processing AE schemes Full-Context-pre-Processing AE schemes

FEa

Full-Context-pre-Processing AE schemes:
PHOTON-BEETLE and XOODYAK

T X = >
T X = >
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Zero-Padding: PHOTON-BEETLE and XOODYAK

Context-pre-Processing AE schemes Full-Context-pre-Processing AE schemes
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Full-Context-pre-Processing AE schemes:
PHOTON-BEETLE and XOODYAK

T X = >
T X = >

Finding a collision for ENCe (for different keys) directly yields a committing attack

» For PHOTON-BEETLE and XOODYAK we can find such collisions

» PHOTON-BEETLE and XOODYAK cannot be “patched” via zero-padding to achieve
CMTg security
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Zero-padding dos not provides CMTk security if the number of zeros is smaller than the block
length

» Assume that we have a ciphertext (C, T) = ENC(K, N, A, M). How to find (K, N, A, M)?
> If My =07, set N <~ TEM*(C;) and choose remaining message blocks as before

» For the authentication part, we have to target a different associated data block than Aj,
which contains the nonce N

N N Ay Az A, G c,
0.1 ! 1,1 | 1,0 i a-1,0 | 0.2 | Yo12 |
o] - )] “ o e ren) - @
M, —D M, —& 3y v
! ! Yy 3
Cl CM 0,0
LeTEMY

K
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Zero-Padding: IsAp

Core idea: birthday attack on the tag

» fix arbitrary key-nonce pair (K, N) and compute an honest ciphertext C by encrypting
some message M

» Try various associated data until a tag collision is found (= 2%* queries); let A and A
denote the associated data yielding the collision

N A; G

Irz ”
T
i

0= 1
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Zero-Padding: IsAp

By setting (K, N, M) + (K, N, M), we get the same ciphertext C during encryption
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e
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» Outputting (K, N, A, M), (K, N, A, M) breaks CMT security

» Cost: ~ 2% (find A and A)
» Committing security of ISAP does not increase via zero-padding
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Zero-Padding: IsAp

By setting (K, N, M) + (K, N, M), we get the same ciphertext C during encryption

N K M —@— WM, —o— G
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‘fi——l« PR n o <r
. z .
N

» Outputting (K, N, A, M), (K, N, A, M) breaks CMT security
» Cost: ~ 2% (find A and A)
» Committing security of ISAP does not increase via zero-padding

» Important difference to ASCON: computation of C is independent of the associated data
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We analyzed the committing security of ...

» . ..the generic composition paradigms
» . .the NIST LWC finalists
» . .the zero-padded versions of several NIST LWC finalists

Thank You!

patrick.struck@uni.kn
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