Committing Authenticated Encryption
Generic Composition, NIST LWC Finalists, and Zero-Padding

Patrick Struck
GAPS, September 2025

University of Konstanz

based on joint work

with Maximiliane Weishaupl (ToSC 2024 Issue 1) and

with Juliane Kramer and Maximiliane Weishaupl (ToSC 2024 Issue 4)

An authenticated encryption scheme is deemed secure if:

1. an adversary cannot learn anything about the message from a ciphertext

2. an adversary cannot forge a valid ciphertext

Real World Ideal World

Attacks have shown that we sometimes require more properties from an AE scheme

» Fast message franking attack?
» Subscribe with Google attack?®
» Partitioning oracle attack3

» possibly more attacks in the future

'Dodis et al. “Fast Message Franking: From Invisible Salamanders to Encryptment”.
In: CRYPTO 2018. 2018.

2Albertini et al. “How to Abuse and Fix Authenticated Encryption Without Key
Commitment”. In: USENIX 2022. 2022.

3Len, Grubbs, and Ristenpart. “Partitioning Oracle Attacks”. In: USENIX 2021. 2021.

Partitioning Oracle Attack:

Assume that A has a list of leaked keys which contains the correct key

Partitioning Oracle Attack:

Assume that A has a list of leaked keys which contains the correct key

» Split the list into two sub-lists L; and L;

» Find a ciphertext that decrypts validly under the keys in L; and to L under the keys in L,

Partitioning Oracle Attack:
Assume that A has a list of leaked keys which contains the correct key
» Split the list into two sub-lists L; and L;
» Find a ciphertext that decrypts validly under the keys in L; and to L under the keys in L,

» Based on the response, A knows if the correct key is in Ly or L

P repeat using the list containing the correct key

Partitioning Oracle Attack:
Assume that A has a list of leaked keys which contains the correct key
» Split the list into two sub-lists L; and L;
» Find a ciphertext that decrypts validly under the keys in L; and to L under the keys in L,

» Based on the response, A knows if the correct key is in Ly or L

P repeat using the list containing the correct key

]Ko Ky Ky Kz Ky Ks K K7\

]KO K K, K3\]K4 Ks Ks K7\

k] [KK) [Kako] [KoF

Partitioning Oracle Attack:
Assume that A has a list of leaked keys which contains the correct key
» Split the list into two sub-lists L; and L;
» Find a ciphertext that decrypts validly under the keys in L; and to L under the keys in L,

» Based on the response, A knows if the correct key is in Ly or L

P repeat using the list containing the correct key

Problem: A can construct ’KO Ki Kz K3 Ky Ks K K7‘

ciphertexts that decrypt under
multiple keys ’Ko Ki Kz K3‘ ’K4 Ks Ko K7‘

k] [KK) [Kako] [KoF

Partitioning Oracle Attack:

Assume that A has a list of leaked keys which contains the correct key

» Split the list into two sub-lists Ly and L,
» Find a ciphertext that decrypts validly under the keys in L; and to L under the keys in L,
» Based on the response, A knows if the correct key is in Ly or L

P repeat using the list containing the correct key

Problem: A can construct ’KO Ki Kz K3 Ky Ks K K7‘

ciphertexts that decrypt under
multiple keys ’Ko Ki Kz K3‘ ’K4 Ks Ko K7‘

Solution: committing security

k] [KK) [Kako] [KoF

Game CMTgk Game CMT

10 (K N A M), (KN, A M) < A 10 (KN, A M), (K, N, A, M) < A()
2: ifFK=K 2: if (K,N,A) =(K,N,A)

3: return 0 3: return 0

4: (C,T)<« ENc(K,N,A, M) 4: (C,T)<«+ ENC(K,N,A, M)

5: (C,T)+ Enc(K,N,A, M) 5: (C,T)<« Enc(K,N,A, M)

6: return ((C,T)=(C, T)) 6: return ((C,T)=(C,T))

Security games CMTx (left) and CMT (right).

Generic Composition

Generic Composition: Overview

There are three methods of generic composition:

1. Encrypt-and-MAC
2. Encrypt-then-MAC
3. MAC-then-Encrypt

*Namprempre, Rogaway, and Shrimpton. “Reconsidering Generic Composition”. In:
EUROCRYPT 2014. 2014.

Generic Composition: Overview

There are three methods of generic composition:

1. Encrypt-and-MAC
2. Encrypt-then-MAC
3. MAC-then-Encrypt

We focus on the so-called N-schemes?*

» construct an AE scheme from a nonce-based encryption scheme and a MAC

*Namprempre, Rogaway, and Shrimpton. “Reconsidering Generic Composition”. In:
EUROCRYPT 2014. 2014.

Generic Composition: Overview

N1 (Encrypt-and-MAC)

Ke

N |
T‘ Enxc | —C
gl

TaG |— T

Generic Composition: Overview

N1 (Encrypt-and-MAC) N2 (Encrypt-then-MAC)

Ke Ke
N l N !
T‘ Enc | —C T_ ENc C
o w |
Tac |[—T TaGg | — T

Generic Composition: Overview

N1 (Encrypt-and-MAC) N2 (Encrypt-then-MAC) N3 (MAC-then-Encrypt)
K. K. Ke
N | N | N |
T‘ Enc | —C T‘ ENc C —b—' Enxc |—C
oL v ol
Tag |— T Tac |— T Tac
A I Tm A - KTm A I KT,H

Generic Composition: Overview

N1 (Encrypt-and-MAC) N2 (Encrypt-then-MAC) N3 (MAC-then-Encrypt)
Ke Ke Ke
N | N | N T |
Enc |[—C Enc T C Enc |—C
Tag |— T \— Tac |— T Tac
Al T A r Al
K,-,-, Km K,,-,

We give positive results for N1 and negative results for N2

Committing Security of N1 (Encrypt-and-MAC)

N1 (E d-MAC Theorem (Committing Security of N1)
1 t- _
(Encrypt-an) Let SE be a symmetric encryption scheme and MAC be a MAC.

Ke Let further N1[SE, MAC] be the authenticated encryption
N | scheme obtained via the N1 construction using SE and MAC.
T» Enc |— C Then for any adversary A there exist adversaries B and € such
that
il
{ Tac |— T AdvSiTSs vac (A) < AdvEE™(B) + Advif(€).

Committing Security of N1 (Encrypt-and-MAC)

N1 (E d-MAC Theorem (Committing Security of N1)
1 t- _
(Encrypt-an) Let SE be a symmetric encryption scheme and MAC be a MAC.

Ke Let further N1[SE, MAC] be the authenticated encryption

N | scheme obtained via the N1 construction using SE and MAC.

Enc |— C Then for any adversary A there exist adversaries B and € such

that

il

Tac |— T AdvSiTSs vac (A) < AdvEE™(B) + Advif(€).
Al

Kin

Committing security of N1 reduces to collision resistance of the underlying MAC and a weak
form of collision resistance of the underlying encryption

Committing Security of N1 (Encrypt-and-MAC)

N1 (Encrypt-and-MAC)

Ke
l

ENc

TAG

Game CR Game wCR

(K, X),(K,X) < A() (K,N,M),(K,N, M) + A()

if (K, X) = (K, X) if K=KV (N,M)# (N, M)
return 0 return 0

T « Tac(K, X) C « Enc(K, N, M)

T + Tac(K, X) C + Exc(K, N, M)

return (T =T) return (C = C)

Security game CR for MACs and wCR for symmetric encryption.

Committing Security of N1 (Encrypt-and-MAC)

N1 (Encrypt-and-MAC)

Ke

N |
ENc

TAG

Al T

Km

Game CR

Game wCR

(K, X), (K, X) < A()

if (K,X)=(K,X)
return 0

T + Tac(K, X)

T + Tac(K, X)

return (T =T)

(K, N, M), (K, N, M) < A()

if K=KV (N,M) % (N, M)
return 0

C + Enc(K, N, M)

C + Exc(K, N, M)

return (C = C)

Security game CR for MACs and wCR for symmetric encryption.

Weak collision-resistant encryption: adversary needs to find distinct keys and one
nonce-message pair that result in the same ciphertext

» finding arbitrary collisions (for tidy encryption schemes) is easy

Committing Security of N1 (Encrypt-and-MAC)

Proof idea: for the output ((Ke, Kin), N, A, M), ((Ke, Km), N, A, M) by A, distinguish between

)

the following cases:

Committing Security of N1 (Encrypt-and-MAC)

Proof idea: for the output ((Ke, Kin), N, A, M), ((Ke, Km), N, A, M) by A, distinguish between

)

the following cases:

1. Ko # Ke A(N, M) = (N, M):
In this case, A breaks wCR security of the underlying encryption

Committing Security of N1 (Encrypt-and-MAC)

Proof idea: for the output ((Ke, Kin), N, A, M), ((Ke, Km), N, A, M) by A, distinguish between

)

the following cases:

1. Ko # Ke A(N, M) = (N, M):
In this case, A breaks wCR security of the underlying encryption

2. Ke =KoV (N, M) # (N, M):
In this case, it holds that (K, N, A, M) # (K, N, A, M) which implies that A
breaks CR security of the MAC

Committing Security of N1 (Encrypt-and-MAC)

Are there schemes that satisfy the required properties?

5Degabriele, Janson, and Struck. “Sponges Resist Leakage: The Case of Authenticated
Encryption”. In: ASIACRYPT 2019. 2019.

10

Committing Security of N1 (Encrypt-and-MAC)

Are there schemes that satisfy the required properties?

We show that the encryption scheme and MAC of SLAE® (a derivate of ISAP) achieve wCR
and CR, respectively

5Degabriele, Janson, and Struck. “Sponges Resist Leakage: The Case of Authenticated
Encryption”. In: ASIACRYPT 2019. 2019.

10

Committing Attack against N2 (Encrypt-then-MAC)

N2 (Encrypt-then-MAC)

TaGc (— T

|

Theorem (Committing Security of N2)

Let SE be a symmetric encryption scheme and MAC be a
MAC. Let further N2 [SE, MAC] be the authenticated
encryption scheme obtained via the N2 construction using
SE and MAC. Then there exists an adversary A such that

Advl(\:I'\Q/l[gE,l\rlAc] (‘A) =1.

11

Committing Attack against N2 (Encrypt-then-MAC)

Theorem (Committing Security of N2)
N2 (Encrypt-then-MAC)

Let SE be a symmetric encryption scheme and MAC be a

M Ke MAC. Let further N2 [SE, MAC] be the authenticated
i encryption scheme obtained via the N2 construction using
ENc ¢ SE and MAC. Then there exists an adversary A such that
Y AdviME v (A) =1.
Tac |— T N2[SE,MAC]
A | !
K

Gist: since N2 authenticates the ciphertext (not the message like N1), finding a ciphertext
collision is sufficient

» not a restricted collision as was the case for N1

11

Committing Attack against N2 (Encrypt-then-MAC)

Adversary A

12

Committing Attack against N2 (Encrypt-then-MAC)

N }je Adversary A
L. Key Ny M s K x N x M
| C < SE.ENC(K., N, M)
M

12

Committing Attack against N2 (Encrypt-then-MAC)

ENc

Adversary A

Ke:N7M<—$’C><N><M
C < SE.ENC(K., N, M)
Ke s K\{K.}

M + SE.DEC(Ke, N, C) // by tidyness: C = Se.Exc(Ke, N, M)

12

Committing Attack against N2 (Encrypt-then-MAC)

N }je Adversary A
7_ Ko, N, M s K x N x M
Enc C
Mf £<— SE.ENC(Ke, N, M)
Ke s K\{Ke}
7 M < SE.DEC(Ke, N, C) / by tidyness: C = Se.ENc(K., N, M)
Al KTm (Km, A) <35 K x A
return ((Ke, Km), N, A, M), ((Ke, Km), N, A, M)
Ke
N |
T_ Enc C
L
Tac |— T
AJ !

12

Committing Attack against N2 (Encrypt-then-MAC)

N }je Adversary A
Ke:N7M<—$’C><N><M
ENe ¢ C SE.E Ko, N, M
+ SE.ENC(K., N,
" < ()
Ke s K\{Kc}
N e— 7 M < SE.DEC(Ke, N, C) / by tidyness: C = Se.ENc(K., N, M)
A 1

(Km, A) < K x A
return ((K€7 Km)7 N7 A7 M)7 ((?E’ Km)7 N7 A,W)

» Attack exploits independent keys for underlying

Enc C
encryption scheme and MAC

L

N

|

12

Committing Attack against N2 (Encrypt-then-MAC)

L

N

ENc

|

Adversary A
Ke:N7M<—$’C><N><M

C
C < SE.ENC(K., N, M)
Ke s K\{Ke}

M + SE.DEC(Ke, N, C) // by tidyness: C = Se.Exc(Ke, N, M)
(Km, A) < K x A
return ((K€7 Km)7 N7 A7 M)7 ((?E’ Km)7 N7 A,W)

» Attack exploits independent keys for underlying

C
encryption scheme and MAC
» Attack does not work if keys are derived via a
Tac

pseudorandom generator from some master key

12

Committing Attack against N2 (Encrypt-then-MAC)

N }je Adversary A
Ke:N7M<—$’C><N><M
ENe ¢ C SE.E Ko, N, M
+ SE.ENC(K., N,
" < ()
Ke s K\{Kc}
I 7 M < SE.DEC(Ke, N, C) / by tidyness: C = Se.ENc(K., N, M)
A 1

(Km, A) < K x A
return ((K€7 Km)7 N7 A7 M)7 ((?E’ Km)7 N7 A,W)

Exc c » Attack exploits independent keys for underlying
encryption scheme and MAC
» Attack does not work if keys are derived via a

pseudorandom generator from some master key

L

N

|

K., » Attack also does not carry over to more practical
AE schemes 12

NIST Lightweight Cryptography Finalists

NIST Lightweight Cryptography (LWC) Standardization

Timeline
» August 2018:
Call for algorithms
» April 2019:
56 round-1 candidates
» August 2019:
32 round-2 candidates
» March 2021:
10 finalists

13

NIST Lightweight Cryptography (LWC) Standardization

Timeline Finalists:
» August 2018: 1. AscoN
Call for algorithms 2. ELEPHANT
. . 3. GIFT-COFB
> April 2019:) 4. GRAIN-128AEAD
56 round-1 candidates 5. ISAP
» August 2019: 6. PHOTON-BEETLE
32 round-2 candidates 7. RomuLUs
_ 8. SCHWAEMM
> Math 2021' 9. TINYJAMBU
10 finalists 10. XOODYAK

13

NIST Lightweight Cryptography (LWC) Standardization

Timeline Finalists:
» August 2018: 1. AscoN
Call for algorithms 2. ELEPHANT
. . 3. GIFT-COFB
> April 2019:) 4. GRAIN-128AEAD
56 round-1 candidates 5. ISAP
» August 2019: 6. PHOTON-BEETLE
32 round-2 candidates 7. RomuLUs
_ 8. SCHWAEMM
> Math 2021' 9. TINYJAMBU
10 finalists 10. XOODYAK

» February 2023:
ASCON selected to be standardized

13

NIST Lightweight Cryptography (LWC) Standardization

Timeline Finalists:
» August 2018: 1. AscoN
Call for algorithms 2. ELEPHANT
. 3. GIrT-COFB
> .
April 2019:) 4. GRAIN-128AEAD
56 round-1 candidates 5. ISAP
» August 2019: 6. PHOTON-BEETLE
32 round-2 candidates 7. RoMULUS
_ 8. SCHWAEMM
> Math 2021' 9. TINYJAMBU
10 finalists 10. XOODYAK

» February 2023:
ASCON selected to be standardized

We analyze the committing security of all finalists except GRAIN-128AEAD (which uses a
dedicated design)

» we focus on the modes of operation, assuming underlying components to be ideal 13

NIST LWC Finalists: Classification

Encrypt-then-MAC AE schemes

M
N ENCy L, C
K l ENCg’ }—' T
A

ELEPHANT and ISAP follow this design

» difference to N2: only a single key

14

NIST LWC Finalists: Classification

Encrypt-then-MAC AE schemes

M
N ENCy L, C
K l ENCg’ }—' T
A

ELEPHANT and ISAP follow this design

» difference to N2: only a single key

Context-pre-Processing AE schemes

]l ENCJV[}—> (C7 T)

AscoN, GiIFT-CorB, PHOTON-BEETLE,
RomuLus, ScCHWAEMM, TINYJAMBU, and
X00DYAK follow this design

T X = >

» dashed/dotted line only present in some
schemes

14

NIST LWC Finalists: Classification

Encrypt-then-MAC AE schemes

M
N ENCy L, C
K l ENCg’ }—' T
A

ELEPHANT and ISAP follow this design

» difference to N2: only a single key

Context-pre-Processing AE schemes

]l ENCJV[}—> (C7 T)

AscoN, GiIFT-CorB, PHOTON-BEETLE,
RomuLus, ScCHWAEMM, TINYJAMBU, and
X00DYAK follow this design

T X = >

» dashed/dotted line only present in some
schemes

Main focus of this talk: Encrypt-then-MAC AE schemes

14

Results: Overview

Scheme CMT

15

Results: Overview

» Attacks with minimal costs against four

schemes (X): Scheme CMT
RomuLus, ELEPHANT, GIFT-COFB, and ROMULUS X
PHOTON-BEETLE ELEPHANT

GIFT-COFB
PHOTON-BEETLE

>x X X

15

Results: Overview

» Attacks with minimal costs against four

schemes (X): Scheme CMT
RomuLus, ELEPHANT, GIFT-COFB, and ROMULUS X
PHOTON-BEETLE ELEPHANT X
> Attacks with significantly less than 24 queries G1rT-COFB X
against two schemes (4): PHOTON-BEETLE X
TINYJAMBU and XOODYAK TINY JAMBU *
XOODYAK +

15

Results: Overview

» Attacks with minimal costs against four

schemes (X): Scheme CMT
RomuLus, ELEPHANT, GIFT-COFB, and ROMULUS X
PHOTON-BEETLE ELEPHANT X
> Attacks with significantly less than 24 queries G1rT-COFB X
against two schemes (4): PHOTON-BEETLE X
TINYJAMBU and XOODYAK TINY JAMBU *
» Proofs showing about 64-bit committing XOODYAK +
security for three schemes (v):
y) ASCON v
ASCON, ISAP, and SCHWAEMM
Isap v
SCHWAEMM v

15

Results: Overview

Attacks boil down to one of the following properties:

Scheme CMT
» The whole state is adversary-controlled ROMULUS X
(RomuLus, ELEPHANT, GIFT-COFB) ELEPHANT X
P true for the initial state CGirT-COFB X
(PHOTON-BEETLE) PHOTON-BEETLE X
» The adversary-controlled state is too large TINYJ AMBU -
(XoopyaK) XOODYAK +

» The tag is too short
(TINYJAMBU)

16

ELEPHANT

» ELEPHANT is based on a public
permutation

» The permutation is used in a : Ll 9 TEMY i L

tweakable Even-Mansour style maski (1)

L

» Upper part: encryption M, H? M, ﬂﬂf
» Lower part: authentication? Y G C.

Aa Cl
a—1,0 i 0,2 i
L>ITEM$2 L»ITEMEQ ‘

_— TEM&)
?A; contains the nonce N.

ELEPHANT

» ELEPHANT is based on a public
permutation

» The permutation is used in a
tweakable Even-Mansour style

» Upper part: encryption

v

Lower part: authentication?
» Observations:

1. via Ay, we have full control
over the state during
authentication

2. via the message, we have full
control over the ciphertext
during encryption

?A; contains the nonce N.

LI

’_,,,
maskigj ij
L ¢

M1 —D M/A —D
I v
e Y __________] Cl C;l
Aq Ay A G
1,0 a—1,0 i 0,2 i
: L>ITEM$2 L>ITEM$2‘
i A A
U U U

17

ELEPHANT

Committing attack:

1. Choose (K, N, A, M) and compute the ciphertext (C, T)

18

ELEPHANT
Committing attack:

1. Choose (K, N, A, M) and compute the ciphertext (C, T)
2. Choose K, As, , A, and compute the states Y and S

A Ao G

Az
1,0 | a—1,0 | 0,2 | y-1,2
L ol e
| |

A A

18

ELEPHANT

Committing attack:
1. Choose (K, N, A, M) and compute the ciphertext (C, T)
, A, and compute the states Y and S

2. Choose K, A,, ...
3. Set A; + Y @ S (note that this also determines the nonce N)

Ay A A, G o
1,0 i a—1,0 \ 0,2 i 1,2 i
§ RS ik Tl T
vl ¥
S

L»!TEMQ
K
18

T

ELEPHANT

Committing attack:
1. Choose (K, N, A, M) and compute the ciphertext (C, T)
2. Choose K, Ay, ..., A,, and compute the states Y and S
3. Set A; + Y @ S (note that this also determines the nonce N)
4. Choose M that, using K and N, encrypts to C

Ay A Aq G G
1,0 | a—1,0 | 0,2 i v
{En Tl R T
Vel X
0,0 S

L»!TEMQ
K

T
18

ELEPHANT: Committing Attack

Theorem

Consider ELEPHANT as shown above. Let TEM be modeled as an ideal tweakable cipher E.
Then there exists an adversary A, making q queries to E, such that

AdvgyE-II—’HANT(‘A) =1,

where q = 2j1 + 2y + « + @. Here, pu is the number of message blocks while computing
ENCy and v is the number of ciphertext blocks while computing ENCy.® Furthermore, o
and @ are the number of associated data blocks for the two tuples that A outputs.

SNote that u and « might not be the same.

19

ISAP is based on a public
permutation

It features a re-keying
function IsAP.RK to
achieve resilience against
side-channel leakage

Upper part: encryption

Lower part: authentication

MM —0— CM

PE

M; —®— G
'
n”
PE
@2
|
N A; G
‘ﬁ’ T’Z n”
f
PH PH PH
[.
\% o011

20

Isapr: Re-Keying Function

» Re-Keying function ISAP.RK is a plain sponge construction
» Core property: rate is set to 1 to minimize the effect of side-channel leakage

Xi Xy K
M Il M |
K — - —d s
PK PB PK
\Y :
n—r <1 1
—/ —/

21

pP: Committing Security

Proof idea:

» model ISAP as a plain sponge with an increased rate to handle its special features
(re-keying function and domain separation)

» Collision resistance of the plain sponge construction yields committing security

N Ai C, T
aD. yany ;
K n n Y * " K
P2 P2 P2 P2
‘ i S 2 2
—
\%
N A; C, Z = (X @ Ka) | 0* T
l | el
5] D D 52}
7 7 7 % %
P2 P2 P2 P2
@ % kS ES
—

0" | IV 22

Isap: Committing Security

Theorem

Consider ISAP as shown above. Let p; and p, be modeled by ideal permutations p; and pa,

respectively. Then for any adversary A making q1 and q» queries to p; and p», respectively, it
holds that

cMT g —1) qi(gr+1) qo(ge—1) (g2 +1)
AdvISAP (‘A) < ok + on—k + 2k 2n7max{n,rg+1} :

23

Isap: Committing Security

Theorem

Consider ISAP as shown above. Let p; and p, be modeled by ideal permutations p; and pa,

respectively. Then for any adversary A making q1 and q» queries to p; and p», respectively, it
holds that

cMT g —1) qi(gr+1) qo(ge—1) (g2 +1)
AdvISAP (‘A) < ok + on—k + 2k 2n7max{n,rg+1} :

Dominant terms (for NIST parameter sets): ql(g{fl) and qz(gz,fl)

23

Isap: Committing Security

Theorem

Consider ISAP as shown above. Let p; and p, be modeled by ideal permutations p; and pa,

respectively. Then for any adversary A making q1 and q» queries to p; and p», respectively, it
holds that

cMT g —1) qi(gr+1) qo(ge—1) (g2 +1)
AdvISAP (‘A) < ok + on—k + 2k 2n7max{n,rg+1} :

Dominant terms (for NIST parameter sets): ql(g{fl) and qz(gffl)

» Committing security can be increased by increasing x (length of tags and session keys)

» but only up to k = n/2 (at which point the other terms become dominant)

23

Zero-Padding

Zero-Padding

Prepend zeros to the message prior to encryption:

zP-AE.ENC(K, N, A, M) = AE.ENC(K, N, A, 0% || M)

"Naito, Sasaki, and Sugawara. “Commiting Security of Ascon: Cryptanalysis on
Primitive and Proof on Mode”. In: ToSC 2023 (4). 2023.

24

Zero-Padding

Prepend zeros to the message prior to encryption:

zP-AE.ENC(K, N, A, M) = AE.ENC(K, N, A, 0% || M)

“Lightweight” method to achieve CMTk security

"Naito, Sasaki, and Sugawara. “Commiting Security of Ascon: Cryptanalysis on
Primitive and Proof on Mode”. In: ToSC 2023 (4). 2023.

24

Zero-Padding

Prepend zeros to the message prior to encryption:

zP-AE.ENC(K, N, A, M) = AE.ENC(K, N, A, 0% || M)

“Lightweight” method to achieve CMTk security

» neither claimed nor proven to work for all schemes

"Naito, Sasaki, and Sugawara. “Commiting Security of Ascon: Cryptanalysis on
Primitive and Proof on Mode”. In: ToSC 2023 (4). 2023.

24

Zero-Padding

Prepend zeros to the message prior to encryption:

zP-AE.ENC(K, N, A, M) = AE.ENC(K, N, A, 0% || M)

“Lightweight” method to achieve CMTk security

» neither claimed nor proven to work for all schemes

» Zero-padding was shown to improve CMT security of ASCON’

"Naito, Sasaki, and Sugawara. “Commiting Security of Ascon: Cryptanalysis on
Primitive and Proof on Mode”. In: ToSC 2023 (4). 2023.

24

Zero-Padding

We ask two questions regarding zero-padding:

25

Zero-Padding

We ask two questions regarding zero-padding:

1. Can we achieve CM Ty security for the schemes that are not CMT secure?

2. Can we increase CMT security for the secure schemes?

25

Zero-Padding: PHOTON-BEETLE and XOODYAK

Context-pre-Processing AE schemes

l ENcy }—> (C T)

T X = >

26

Zero-Padding: PHOTON-BEETLE and XOODYAK

Context-pre-Processing AE schemes Full-Context-pre-Processing AE schemes

FEa

Full-Context-pre-Processing AE schemes:
PHOTON-BEETLE and XOODYAK

T X = >
T X = >

26

Zero-Padding: PHOTON-BEETLE and XOODYAK

Context-pre-Processing AE schemes Full-Context-pre-Processing AE schemes

Y
oo J-ccm o L

Full-Context-pre-Processing AE schemes:
PHOTON-BEETLE and XOODYAK

T X = >
T X = >

Finding a collision for ENCe (for different keys) directly yields a committing attack

26

Zero-Padding: PHOTON-BEETLE and XOODYAK

Context-pre-Processing AE schemes Full-Context-pre-Processing AE schemes

Y
oo J-ccm o L

Full-Context-pre-Processing AE schemes:
PHOTON-BEETLE and XOODYAK

T X = >
T X = >

Finding a collision for ENCe (for different keys) directly yields a committing attack

» For PHOTON-BEETLE and XOODYAK we can find such collisions

» PHOTON-BEETLE and XOODYAK cannot be “patched” via zero-padding to achieve
CMTg security

26

Zero-Padding: ELEPHANT

Zero-padding dos not provides CMTk security if the number of zeros is smaller than the block
length

» Assume that we have a ciphertext (C, T) = ENC(K, N, A, M). How to find (K, N, A, M)?

27

Zero-Padding: ELEPHANT

Zero-padding dos not provides CMTk security if the number of zeros is smaller than the block
length

» Assume that we have a ciphertext (C, T) = ENC(K, N, A, M). How to find (K, N, A, M)?
> If My =07, set N <~ TEM*(C;) and choose remaining message blocks as before

27

Zero-Padding: ELEPHANT

Zero-padding dos not provides CMTk security if the number of zeros is smaller than the block
length

» Assume that we have a ciphertext (C, T) = ENC(K, N, A, M). How to find (K, N, A, M)?
> If My =07, set N <~ TEM*(C;) and choose remaining message blocks as before

» For the authentication part, we have to target a different associated data block than Aj,
which contains the nonce N

N N Ay Az A, G c,
0.1 ! 1,1 | 1,0 i a-1,0 | 0.2 | Yo12 |
o] -)] “ o e ren) - @
M, —D M, —& 3y v
! ! Yy 3
Cl CM 0,0
LeTEMY

K

27
T

Zero-Padding: IsAp

Core idea: birthday attack on the tag

28

Zero-Padding: IsAp

Core idea: birthday attack on the tag

» fix arbitrary key-nonce pair (K, N) and compute an honest ciphertext C by encrypting
some message M

28

Zero-Padding: IsAp

Core idea: birthday attack on the tag

» fix arbitrary key-nonce pair (K, N) and compute an honest ciphertext C by encrypting
some message M

» Try various associated data until a tag collision is found (= 2%* queries); let A and A
denote the associated data yielding the collision

N A; G

Irz ”
T
i

0= 1

28

Zero-Padding: IsAp

By setting (K, N, M) + (K, N, M), we get the same ciphertext C during encryption

N K W —&— G
| —~
K -k e)
e
|

Mﬁ —p— G

PE

29

Zero-Padding: IsAp

By setting (K, N, M) + (K, N, M), we get the same ciphertext C during encryption

N K M, —&— G
| —~
K -k e)
e
|

PE

» Outputting (K, N, A, M), (K, N, A, M) breaks CMT security

» Cost: ~ 2% (find A and A)
» Committing security of ISAP does not increase via zero-padding

29

Zero-Padding: IsAp

By setting (K, N, M) + (K, N, M), we get the same ciphertext C during encryption

N K M —@— WM, —o— G
% , ™
‘fi——l« PR n o <r
. z .
N

» Outputting (K, N, A, M), (K, N, A, M) breaks CMT security
» Cost: ~ 2% (find A and A)
» Committing security of ISAP does not increase via zero-padding

» Important difference to ASCON: computation of C is independent of the associated data

29

Conclusion

30

Conclusion

We analyzed the committing security of ...

» . ..the generic composition paradigms

30

Conclusion

We analyzed the committing security of ...

» . ..the generic composition paradigms

» . ..the NIST LWC finalists

30

Conclusion

We analyzed the committing security of ...

» . ..the generic composition paradigms
» . .the NIST LWC finalists
» . .the zero-padded versions of several NIST LWC finalists

30

Conclusion

We analyzed the committing security of ...

» . ..the generic composition paradigms
» . .the NIST LWC finalists
» . .the zero-padded versions of several NIST LWC finalists

Thank You!

patrick.struck@uni.kn

30

