Committing Authenticated Encryption

Generic Composition, NIST LWC Finalists, and Zero-Padding

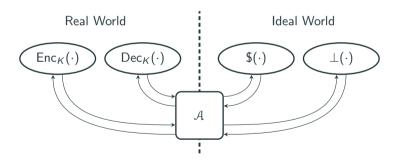
Patrick Struck

GAPS, September 2025

University of Konstanz based on joint work with Maximiliane Weishäupl (ToSC 2024 Issue 1) and with Juliane Krämer and Maximiliane Weishäupl (ToSC 2024 Issue 4)

An authenticated encryption scheme is deemed secure if:

- 1. an adversary cannot learn anything about the message from a ciphertext
- 2. an adversary cannot forge a valid ciphertext



1

Attacks have shown that we sometimes require more properties from an AE scheme

- ► Fast message franking attack¹
- ► Subscribe with Google attack²
- ► Partitioning oracle attack³
- possibly more attacks in the future

¹Dodis et al. "Fast Message Franking: From Invisible Salamanders to Encryptment".

²Albertini et al. "How to Abuse and Fix Authenticated Encryption Without Key Commitment". In: *USENIX 2022*. 2022.

³Len, Grubbs, and Ristenpart. "Partitioning Oracle Attacks". In: USENIX 2021. 2021.

Partitioning Oracle Attack:

Assume that $\ensuremath{\mathcal{A}}$ has a list of leaked keys which contains the correct key

Partitioning Oracle Attack:

Assume that $\ensuremath{\mathcal{A}}$ has a list of leaked keys which contains the correct key

- ightharpoonup Split the list into two sub-lists L_1 and L_2
- lacktriangle Find a ciphertext that decrypts validly under the keys in L_1 and to \bot under the keys in L_2

3

Partitioning Oracle Attack:

Assume that ${\mathcal A}$ has a list of leaked keys which contains the correct key

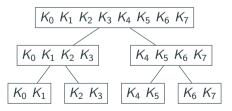
- ightharpoonup Split the list into two sub-lists L_1 and L_2
- lacktriangle Find a ciphertext that decrypts validly under the keys in L_1 and to ot under the keys in L_2
- lacktriangle Based on the response, ${\cal A}$ knows if the correct key is in L_1 or L_2
- repeat using the list containing the correct key

3

Partitioning Oracle Attack:

Assume that A has a list of leaked keys which contains the correct key

- ightharpoonup Split the list into two sub-lists L_1 and L_2
- \blacktriangleright Find a ciphertext that decrypts validly under the keys in L_1 and to \bot under the keys in L_2
- ▶ Based on the response, A knows if the correct key is in L_1 or L_2
- repeat using the list containing the correct key

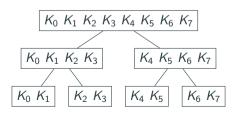


Partitioning Oracle Attack:

Assume that ${\mathcal A}$ has a list of leaked keys which contains the correct key

- ightharpoonup Split the list into two sub-lists L_1 and L_2
- ightharpoonup Find a ciphertext that decrypts validly under the keys in L_1 and to \perp under the keys in L_2
- ▶ Based on the response, A knows if the correct key is in L_1 or L_2
- repeat using the list containing the correct key

Problem: \mathcal{A} can construct ciphertexts that decrypt under multiple keys

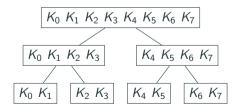


Partitioning Oracle Attack:

Assume that ${\mathcal A}$ has a list of leaked keys which contains the correct key

- ▶ Split the list into two sub-lists L_1 and L_2
- \blacktriangleright Find a ciphertext that decrypts validly under the keys in L_1 and to \bot under the keys in L_2
- ▶ Based on the response, A knows if the correct key is in L_1 or L_2
- repeat using the list containing the correct key

Problem: A can construct ciphertexts that decrypt under multiple keys **Solution:** committing security



Game CMT _K	Game CMT
$1: (K, N, A, M), (\overline{K}, \overline{N}, \overline{A}, \overline{M}) \leftarrow A()$	1: $(K, N, A, M), (\overline{K}, \overline{N}, \overline{A}, \overline{M}) \leftarrow A()$
2: if $K = \overline{K}$	2: if $(K, N, A) = (\overline{K}, \overline{N}, \overline{A})$
3: return 0	3: return 0
4: $(C, T) \leftarrow \text{Enc}(K, N, A, M)$	4: $(C, T) \leftarrow \text{Enc}(K, N, A, M)$
5: $(\overline{C}, \overline{T}) \leftarrow \text{Enc}(\overline{K}, \overline{N}, \overline{A}, \overline{M})$	$5: \ (\overline{C},\overline{T}) \leftarrow \mathrm{Enc}(\overline{K},\overline{N},\overline{A},\overline{M})$
6: return $((C, T) = (\overline{C}, \overline{T}))$	6: return $((C, T) = (\overline{C}, \overline{T}))$

Security games CMT_K (left) and CMT (right).

Generic Composition

There are three methods of generic composition:

- 1. Encrypt-and-MAC
- 2. Encrypt-then-MAC
- 3. MAC-then-Encrypt

⁴Namprempre, Rogaway, and Shrimpton. **"Reconsidering Generic Composition".** In: *EUROCRYPT 2014*. 2014.

There are three methods of generic composition:

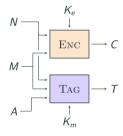
- 1. Encrypt-and-MAC
- 2. Encrypt-then-MAC
- 3. MAC-then-Encrypt

We focus on the so-called N-schemes⁴

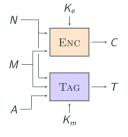
▶ construct an AE scheme from a nonce-based encryption scheme and a MAC

⁴Namprempre, Rogaway, and Shrimpton. "Reconsidering Generic Composition". In: *EUROCRYPT 2014*. 2014.

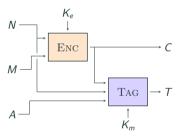
N1 (Encrypt-and-MAC)



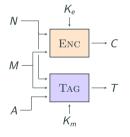
N1 (Encrypt-and-MAC)



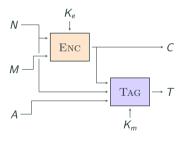
N2 (Encrypt-then-MAC)



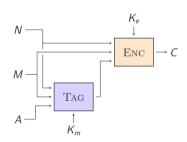
N1 (Encrypt-and-MAC)

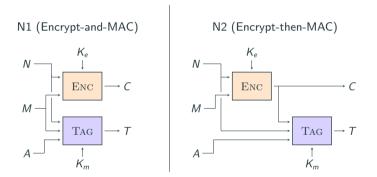


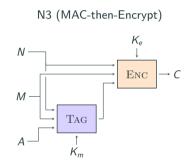
N2 (Encrypt-then-MAC)



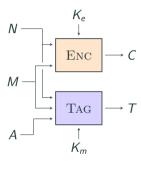
N3 (MAC-then-Encrypt)







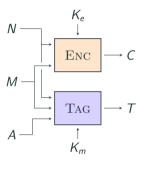
We give positive results for N1 and negative results for N2 $\,$



Theorem (Committing Security of N1)

Let SE be a symmetric encryption scheme and MAC be a MAC. Let further N1[SE, MAC] be the authenticated encryption scheme obtained via the N1 construction using SE and MAC. Then for any adversary $\mathcal A$ there exist adversaries $\mathcal B$ and $\mathcal C$ such that

$$\mathbf{Adv}^{\mathsf{CMT}}_{\mathrm{N1[Se,Mac]}}(\mathcal{A}) \leq \mathbf{Adv}^{\mathsf{wCR}}_{\mathrm{Se}}(\mathcal{B}) + \mathbf{Adv}^{\mathsf{CR}}_{\mathrm{Mac}}(\mathcal{C})\,.$$

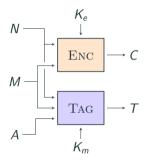


Theorem (Committing Security of N1)

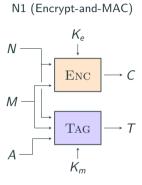
Let SE be a symmetric encryption scheme and MAC be a MAC. Let further N1[SE, MAC] be the authenticated encryption scheme obtained via the N1 construction using SE and MAC. Then for any adversary $\mathcal A$ there exist adversaries $\mathcal B$ and $\mathcal C$ such that

$$\mathbf{Adv}^{\mathsf{CMT}}_{\mathrm{N1[Se,Mac]}}(\mathcal{A}) \leq \mathbf{Adv}^{\mathsf{wCR}}_{\mathrm{Se}}(\mathfrak{B}) + \mathbf{Adv}^{\mathsf{CR}}_{\mathrm{Mac}}(\mathfrak{C})\,.$$

Committing security of N1 reduces to collision resistance of the underlying MAC and a weak form of collision resistance of the underlying encryption



Security game CR for MACs and wCR for symmetric encryption.



$$\begin{array}{ll} \operatorname{\mathsf{Game}} \ \operatorname{\mathsf{CR}} & \operatorname{\mathsf{Game}} \ \operatorname{\mathsf{wCR}} \\ \hline (K,X), (\overline{K},\overline{X}) \leftarrow \mathcal{A}() & \overline{(K,N,M)}, (\overline{K},\overline{N},\overline{M}) \leftarrow \mathcal{A}() \\ \hline \text{if} \ (K,X) = (\overline{K},\overline{X}) & \text{if} \ K = \overline{K} \lor (N,M) \neq (\overline{N},\overline{M}) \\ \hline \text{return 0} & \text{return 0} \\ \hline T \leftarrow \operatorname{TAG}(K,X) & C \leftarrow \operatorname{Enc}(K,N,M) \\ \overline{T} \leftarrow \operatorname{TAG}(\overline{K},\overline{X}) & \overline{C} \leftarrow \operatorname{Enc}(\overline{K},\overline{N},\overline{M}) \\ \hline \text{return } (T = \overline{T}) & \text{return } (C = \overline{C}) \\ \hline \end{array}$$

Security game CR for MACs and wCR for symmetric encryption.

Weak collision-resistant encryption: adversary needs to find distinct keys and one nonce-message pair that result in the same ciphertext

► finding arbitrary collisions (for tidy encryption schemes) is easy

Proof idea: for the output $((K_e, K_m), N, A, M), ((\overline{K}_e, \overline{K}_m), \overline{N}, \overline{A}, \overline{M})$ by A, distinguish between the following cases:

Proof idea: for the output $((K_e, K_m), N, A, M), ((\overline{K}_e, \overline{K}_m), \overline{N}, \overline{A}, \overline{M})$ by A, distinguish between the following cases:

1. $K_e \neq \overline{K}_e \wedge (N, M) = (\overline{N}, \overline{M})$:

In this case, A breaks wCR security of the underlying encryption

Proof idea: for the output $((K_e, K_m), N, A, M), ((\overline{K}_e, \overline{K}_m), \overline{N}, \overline{A}, \overline{M})$ by A, distinguish between the following cases:

- 1. $K_e \neq \overline{K}_e \wedge (N, M) = (\overline{N}, \overline{M})$:

 In this case, A breaks wCR security of the underlying encryption
- 2. $K_e = \overline{K}_e \vee (N, M) \neq (\overline{N}, \overline{M})$:
 In this case, it holds that $(K_m, N, A, M) \neq (\overline{K}_m, \overline{N}, \overline{A}, \overline{M})$ which implies that A breaks CR security of the MAC

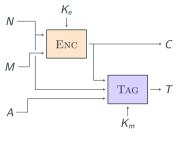
Are there schemes that satisfy the required properties?

⁵Degabriele, Janson, and Struck. "Sponges Resist Leakage: The Case of Authenticated Encryption". In: ASIACRYPT 2019. 2019.

Are there schemes that satisfy the required properties?

We show that the encryption scheme and MAC of ${\rm SLAE}^5$ (a derivate of ${\rm ISAP}$) achieve ${\rm wCR}$ and ${\rm CR}$, respectively

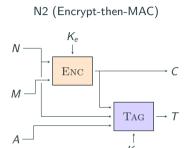
⁵Degabriele, Janson, and Struck. **"Sponges Resist Leakage: The Case of Authenticated Encryption".** In: *ASIACRYPT 2019.* 2019.



Theorem (Committing Security of N2)

Let SE be a symmetric encryption scheme and MAC be a MAC. Let further N2 [SE, MAC] be the authenticated encryption scheme obtained via the N2 construction using SE and MAC. Then there exists an adversary $\mathcal A$ such that

$$\mathsf{Adv}^{\mathsf{CMT}}_{\mathrm{N2[SE,MAC]}}(\mathcal{A}) = 1$$



Theorem (Committing Security of N2)

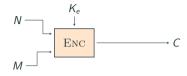
Let SE be a symmetric encryption scheme and MAC be a MAC. Let further N2 [SE, MAC] be the authenticated encryption scheme obtained via the N2 construction using SE and MAC. Then there exists an adversary $\mathcal A$ such that

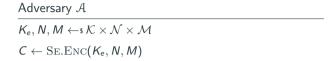
$$\mathsf{Adv}^{\mathsf{CMT}}_{\mathrm{N2[Se,Mac]}}(\mathcal{A}) = 1$$
 .

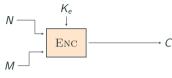
Gist: since N2 authenticates the ciphertext (not the message like N1), finding a ciphertext collision is sufficient

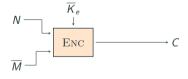
▶ not a restricted collision as was the case for N1

 $\mathsf{Adversary}\ \mathcal{A}$



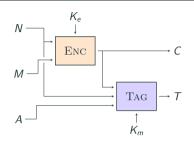


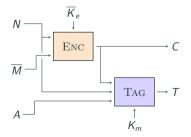




Adversary A

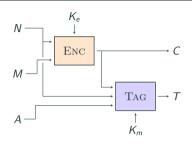
$$\begin{array}{l} \overline{K_e, N, M \leftarrow s \, \mathcal{K} \times \mathcal{N} \times \mathcal{M}} \\ C \leftarrow \mathrm{Se.Enc}(K_e, N, M) \\ \overline{K}_e \leftarrow s \, \mathcal{K} \backslash \{K_e\} \\ \overline{M} \leftarrow \mathrm{Se.Dec}(\overline{K}_e, N, C) \quad \text{$/\!\!/} \text{ by tidyness: } C = \mathrm{Se.Enc}(\overline{K}_e, N, \overline{M}) \end{array}$$

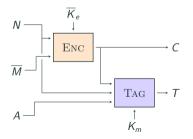




Adversary ${\mathcal A}$

$$\begin{array}{l} \overline{K_e,N,M} \leftarrow \hspace{-0.1cm} \text{s} \; \mathcal{K} \times \mathcal{N} \times \mathcal{M} \\ C \leftarrow \operatorname{SE.Enc}(K_e,N,M) \\ \overline{K_e} \leftarrow \hspace{-0.1cm} \text{s} \; \mathcal{K} \backslash \{K_e\} \\ \overline{M} \leftarrow \operatorname{SE.DEC}(\overline{K_e},N,C) \quad \text{$/\!\!/} \; \text{by tidyness:} \; C = \operatorname{SE.Enc}(\overline{K_e},N,\overline{M}) \\ (K_m,A) \leftarrow \hspace{-0.1cm} \text{s} \; \mathcal{K} \times \mathcal{A} \\ \text{return} \; ((K_e,K_m),N,A,M), ((\overline{K_e},K_m),N,A,\overline{M}) \end{array}$$

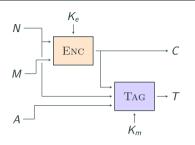




Adversary A

$$\begin{array}{l} \overline{K_e,N,M} \leftarrow \hspace{-0.5em} \hspace{-0.5$$

 Attack exploits independent keys for underlying encryption scheme and MAC

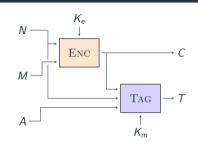


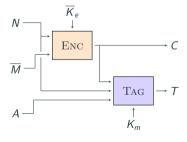


Adversary A

$$\begin{split} \overline{K_e,N,M} &\leftarrow \text{s} \; \mathcal{K} \times \mathcal{N} \times \mathcal{M} \\ C &\leftarrow \text{SE.Enc}(K_e,N,M) \\ \overline{K_e} &\leftarrow \text{s} \; \mathcal{K} \backslash \{K_e\} \\ \overline{M} &\leftarrow \text{SE.DEc}(\overline{K}_e,N,C) \quad \text{$/\!\!/} \; \text{by tidyness:} \; C = \text{SE.Enc}(\overline{K}_e,N,\overline{M}) \\ (K_m,A) &\leftarrow \text{s} \; \mathcal{K} \times \mathcal{A} \\ \text{return} \; ((K_e,K_m),N,A,M), ((\overline{K}_e,K_m),N,A,\overline{M}) \end{split}$$

- Attack exploits independent keys for underlying encryption scheme and MAC
- Attack does not work if keys are derived via a pseudorandom generator from some master key





Adversary ${\cal A}$

 $K_{\circ}, N, M \leftarrow s K \times N \times M$

 $C \leftarrow \text{Se.Enc}(K_e, N, M)$

 $\overline{K}_e \leftarrow \mathcal{K} \setminus \{K_e\}$

 $\overline{M} \leftarrow \text{SE.DEC}(\overline{K}_e, N, C) \quad \text{//} \text{ by tidyness: } C = \text{SE.Enc}(\overline{K}_e, N, \overline{M})$

 $(K_m,A) \leftarrow s \mathcal{K} \times \mathcal{A}$

return $((K_e, K_m), N, A, M), ((\overline{K}_e, K_m), N, A, \overline{M})$

- ► Attack exploits independent keys for underlying encryption scheme and MAC
- ► Attack does not work if keys are derived via a pseudorandom generator from some master key
- ► Attack also does not carry over to more practical AF schemes

NIST Lightweight Cryptography Finalists

Timeline

- ► August 2018: Call for algorithms
- ► April 2019: 56 round-1 candidates
- ► August 2019: 32 round-2 candidates
- ► March 2021: 10 finalists

Timeline

- ► August 2018: Call for algorithms
- ► April 2019: 56 round-1 candidates
- ► August 2019: 32 round-2 candidates
- ► March 2021: 10 finalists

Finalists:

- 1. Ascon
- 2. Elephant
- 3. Gift-Cofb
- 4. Grain-128aead
- 5. Isap
- 6. Photon-Beetle
- 7. Romulus
- 8. Schwaemm
- 9. TinyJambu
- 10. Xoodyak

Timeline

- ► August 2018: Call for algorithms
- ► April 2019: 56 round-1 candidates
- ► August 2019: 32 round-2 candidates
- ► March 2021: 10 finalists
- ► February 2023:
 ASCON selected to be standardized

Finalists:

- 1. Ascon
- 2. Elephant
- 3. Gift-Cofb
- 4. Grain-128aead
- 5. Isap
- 6. Photon-Beetle
- 7. Romulus
- 8. Schwaemm
- 9. TinyJambu
- 10. Xoodyak

Timeline

- ► August 2018: Call for algorithms
- ► April 2019: 56 round-1 candidates
- ► August 2019:
 - 32 round-2 candidates
- ► March 2021:
 - 10 finalists
- ► February 2023:

ASCON selected to be standardized

Finalists:

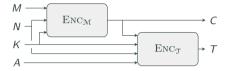
- 1. Ascon
- 2. Elephant
- 3. Gift-Cofb4. Grain-128aead
- 5. ISAP
- 6. PHOTON-BEETLE
- 7. Romulus
- 8. Schwaemm
- 9. TinyJambu
- 10. Xoodyak

We analyze the committing security of all finalists except GRAIN-128AEAD (which uses a dedicated design)

▶ we focus on the modes of operation, assuming underlying components to be ideal

NIST LWC Finalists: Classification

Encrypt-then-MAC AE schemes

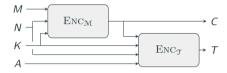


$\ensuremath{\mathrm{ELEPHANT}}$ and $\ensuremath{\mathrm{ISAP}}$ follow this design

▶ difference to N2: only a single key

NIST LWC Finalists: Classification

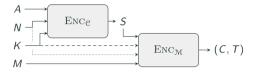
Encrypt-then-MAC AE schemes



$\ensuremath{\mathsf{ELEPHANT}}$ and $\ensuremath{\mathsf{ISAP}}$ follow this design

▶ difference to N2: only a single key

Context-pre-Processing AE schemes

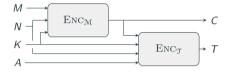


ASCON, GIFT-COFB, PHOTON-BEETLE, ROMULUS, SCHWAEMM, TINYJAMBU, and XOODYAK follow this design

 dashed/dotted line only present in some schemes

NIST LWC Finalists: Classification

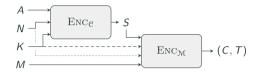
Encrypt-then-MAC AE schemes



ELEPHANT and ISAP follow this design

▶ difference to N2: only a single key

Context-pre-Processing AE schemes



ASCON, GIFT-COFB, PHOTON-BEETLE, ROMULUS, SCHWAEMM, TINYJAMBU, and XOODYAK follow this design

dashed/dotted line only present in some schemes

Main focus of this talk: Encrypt-then-MAC AE schemes

Scheme CMT

PHOTON-BEETLE

► Attacks with minimal costs against four schemes (X):

ROMULUS, ELEPHANT, GIFT-COFB, and

Scheme	CMT
Romulus	Х
Elephant	X
Gift-Cofb	X
PHOTON-BEETLE	X

► Attacks with minimal costs against four schemes (X):

ROMULUS, ELEPHANT, GIFT-COFB, and PHOTON-BEETLE

► Attacks with significantly less than 2⁶⁴ queries against two schemes (♦):
TINYJAMBU and XOODYAK

Scheme	CMT
Romulus	Х
ELEPHANT	X
GIFT-COFB	X
PHOTON-BEETLE	X
TINYJAMBU	+
Xoodyak	+

•	Attacks with minimal costs against four		
	schemes (X):		
	ROMULUS, ELEPHANT, GIFT-COFB, and		
	PHOTON-BEETLE		

- ► Attacks with significantly less than 2⁶⁴ queries against two schemes (♦):

 TINYJAMBU and XOODYAK
- ▶ Proofs showing about 64-bit committing security for three schemes (
 (
 ASCON, ISAP, and SCHWAEMM

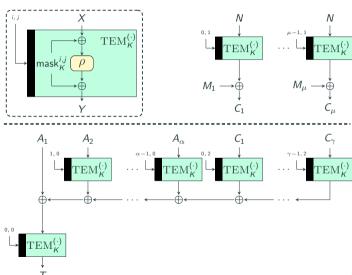
Scheme	CMT
Romulus	Х
ELEPHANT	X
Gift-Cofb	X
PHOTON-BEETLE	X
TinyJambu	+
Xoodyak	*
Ascon	1
Isap	✓
SCHWAEMM	✓

Attacks boil down to one of the following properties:

- ► The whole state is adversary-controlled (ROMULUS, ELEPHANT, GIFT-COFB)
 - ► true for the initial state (PHOTON-BEETLE)
- ► The adversary-controlled state is too large (XOODYAK)
- ► The tag is too short (TINYJAMBU)

Scheme	CMT
Romulus	Х
ELEPHANT	X
Gift-Cofb	X
PHOTON-BEETLE	X
TINYJAMBU	+
Xoodyak	*

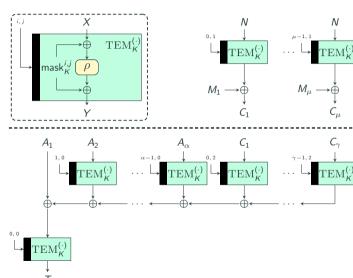
- ► ELEPHANT is based on a public permutation
- ► The permutation is used in a tweakable Even-Mansour style
- ► Upper part: encryption
- ► Lower part: authentication^a



 $^{{}^{}a}A_{1}$ contains the nonce N.

- ELEPHANT is based on a public permutation
- ► The permutation is used in a tweakable Even-Mansour style
- ► Upper part: encryption
- Lower part: authentication^a
- Observations:
 - 1. via A_1 , we have full control over the state during authentication

^{2.} via the message, we have full control over the ciphertext during encryption ${}^{a}A_{1}$ contains the nonce N.

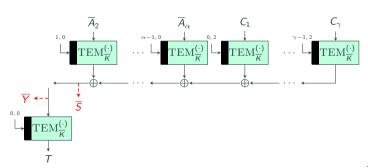


Committing attack:

1. Choose (K, N, A, M) and compute the ciphertext (C, T)

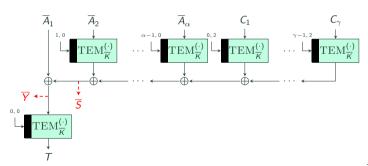
Committing attack:

- 1. Choose (K, N, A, M) and compute the ciphertext (C, T)
- 2. Choose \overline{K} , \overline{A}_2 , ..., \overline{A}_{α} , and compute the states \overline{Y} and \overline{S}



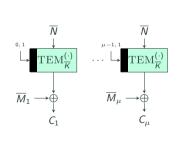
Committing attack:

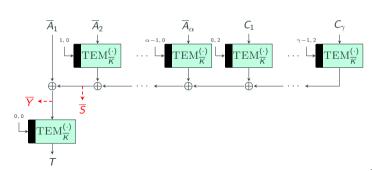
- 1. Choose (K, N, A, M) and compute the ciphertext (C, T)
- 2. Choose \overline{K} , \overline{A}_2 , ..., \overline{A}_{α} , and compute the states \overline{Y} and \overline{S}
- 3. Set $\overline{A}_1 \leftarrow \overline{Y} \oplus \overline{S}$ (note that this also determines the nonce \overline{N})



Committing attack:

- 1. Choose (K, N, A, M) and compute the ciphertext (C, T)
- 2. Choose \overline{K} , \overline{A}_2 , ..., \overline{A}_{α} , and compute the states \overline{Y} and \overline{S}
- 3. Set $\overline{A}_1 \leftarrow \overline{Y} \oplus \overline{S}$ (note that this also determines the nonce \overline{N})
- 4. Choose \overline{M} that, using \overline{K} and \overline{N} , encrypts to C





ELEPHANT: Committing Attack

Theorem

Consider Elephant as shown above. Let TEM be modeled as an ideal tweakable cipher \widetilde{E} . Then there exists an adversary \mathcal{A} , making q queries to \widetilde{E} , such that

$$\mathsf{Adv}^\mathsf{CMT}_{\mathrm{Elephant}}(\mathcal{A}) = 1\,,$$

where $q=2\mu+2\gamma+\alpha+\overline{\alpha}$. Here, μ is the number of message blocks while computing $\mathrm{Enc}_{\mathfrak{M}}$ and γ is the number of ciphertext blocks while computing $\mathrm{Enc}_{\mathfrak{T}}$. Furthermore, α and $\overline{\alpha}$ are the number of associated data blocks for the two tuples that $\mathcal A$ outputs.

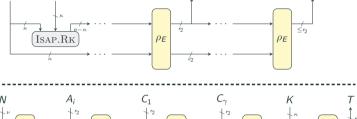
⁶Note that μ and γ might not be the same.

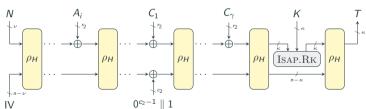
ISAP

► ISAP is based on a public permutation

Ν

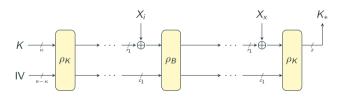
- ► It features a re-keying function ISAP.RK to achieve resilience against side-channel leakage
- ► Upper part: encryption
- ► Lower part: authentication





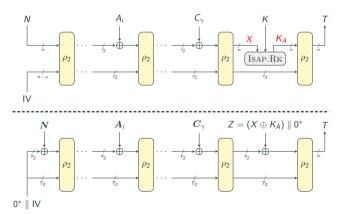
ISAP: Re-Keying Function

- ► Re-Keying function ISAP.RK is a plain sponge construction
- ► Core property: rate is set to 1 to minimize the effect of side-channel leakage



Proof idea:

- ► model IsAP as a plain sponge with an increased rate to handle its special features (re-keying function and domain separation)
- ► Collision resistance of the plain sponge construction yields committing security



Theorem

Consider ISAP as shown above. Let ρ_1 and ρ_2 be modeled by ideal permutations ρ_1 and ρ_2 , respectively. Then for any adversary $\mathcal A$ making q_1 and q_2 queries to ρ_1 and ρ_2 , respectively, it holds that

$$\mathsf{Adv}^{\mathsf{CMT}}_{\mathrm{ISAP}}(\mathcal{A}) \leq \frac{q_1(q_1-1)}{2^{\kappa}} + \frac{q_1(q_1+1)}{2^{n-\kappa}} + \frac{q_2(q_2-1)}{2^{\kappa}} + \frac{q_2(q_2+1)}{2^{n-\max\{\kappa, r_2+1\}}} \ .$$

Theorem

Consider ISAP as shown above. Let ρ_1 and ρ_2 be modeled by ideal permutations ρ_1 and ρ_2 , respectively. Then for any adversary $\mathcal A$ making q_1 and q_2 queries to ρ_1 and ρ_2 , respectively, it holds that

$$\mathsf{Adv}^{\mathsf{CMT}}_{\mathrm{Isap}}(\mathcal{A}) \leq \frac{q_1(q_1-1)}{2^{\kappa}} + \frac{q_1(q_1+1)}{2^{n-\kappa}} + \frac{q_2(q_2-1)}{2^{\kappa}} + \frac{q_2(q_2+1)}{2^{n-\max\{\kappa, r_2+1\}}} \ .$$

Dominant terms (for NIST parameter sets): $\frac{q_1(q_1-1)}{2^{\kappa}}$ and $\frac{q_2(q_2-1)}{2^{\kappa}}$

Theorem

Consider ISAP as shown above. Let ρ_1 and ρ_2 be modeled by ideal permutations ρ_1 and ρ_2 , respectively. Then for any adversary $\mathcal A$ making q_1 and q_2 queries to ρ_1 and ρ_2 , respectively, it holds that

$$\text{Adv}^{\text{CMT}}_{\mathrm{ISAP}}(\mathcal{A}) \leq \frac{q_1(q_1-1)}{2^{\kappa}} + \frac{q_1(q_1+1)}{2^{n-\kappa}} + \frac{q_2(q_2-1)}{2^{\kappa}} + \frac{q_2(q_2+1)}{2^{n-\max\{\kappa,r_2+1\}}} \; .$$

Dominant terms (for NIST parameter sets): $\frac{q_1(q_1-1)}{2^{\kappa}}$ and $\frac{q_2(q_2-1)}{2^{\kappa}}$

- lacktriangle Committing security can be increased by increasing κ (length of tags and session keys)
- **b** but only up to $\kappa = n/2$ (at which point the other terms become dominant)

Prepend zeros to the message prior to encryption:

$$\text{ZP-Ae.Enc}(K, N, A, M) := \text{Ae.Enc}(K, N, A, 0^z \parallel M)$$

⁷Naito, Sasaki, and Sugawara. "Commiting Security of Ascon: Cryptanalysis on Primitive and Proof on Mode". In: *ToSC 2023 (4).* 2023.

Prepend zeros to the message prior to encryption:

$$\text{ZP-Ae.Enc}(K, N, A, M) := \text{Ae.Enc}(K, N, A, 0^z \parallel M)$$

"Lightweight" method to achieve CMT_K security

⁷Naito, Sasaki, and Sugawara. **"Commiting Security of Ascon: Cryptanalysis on Primitive and Proof on Mode".** In: *ToSC 2023 (4).* 2023.

Prepend zeros to the message prior to encryption:

$$\text{ZP-Ae.Enc}(K, N, A, M) := \text{Ae.Enc}(K, N, A, 0^z \parallel M)$$

"Lightweight" method to achieve CMT_K security

neither claimed nor proven to work for all schemes

⁷Naito, Sasaki, and Sugawara. **"Commiting Security of Ascon: Cryptanalysis on Primitive and Proof on Mode".** In: *ToSC 2023 (4).* 2023.

Prepend zeros to the message prior to encryption:

$$\text{ZP-Ae.Enc}(K, N, A, M) := \text{Ae.Enc}(K, N, A, 0^z \parallel M)$$

"Lightweight" method to achieve $\mathrm{CMT}_{\mathsf{K}}$ security

- ▶ neither claimed nor proven to work for all schemes
- ► Zero-padding was shown to improve CMT security of ASCON⁷

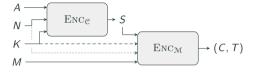
⁷Naito, Sasaki, and Sugawara. **"Commiting Security of Ascon: Cryptanalysis on Primitive and Proof on Mode".** In: *ToSC 2023 (4).* 2023.

We ask two questions regarding zero-padding:

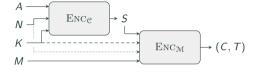
We ask two questions regarding zero-padding:

- 1. Can we achieve $\mathrm{CMT}_{\mathsf{K}}$ security for the schemes that are not CMT secure?
- 2. Can we increase CMT security for the secure schemes?

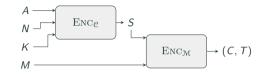
Context-pre-Processing AE schemes



Context-pre-Processing AE schemes

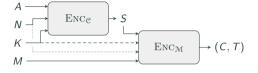


Full-Context-pre-Processing AE schemes

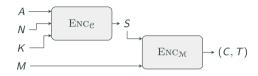


Full-Context-pre-Processing AE schemes: PHOTON-BEETLE and XOODYAK

Context-pre-Processing AE schemes



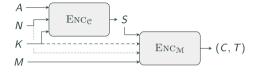
Full-Context-pre-Processing AE schemes



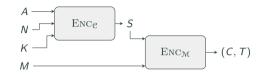
Full-Context-pre-Processing AE schemes: PHOTON-BEETLE and XOODYAK

Finding a collision for $\mathrm{Enc}_{\mathbb{C}}$ (for different keys) directly yields a committing attack

Context-pre-Processing AE schemes



Full-Context-pre-Processing AE schemes



Full-Context-pre-Processing AE schemes: Photon-Beetle and Xoodyak

Finding a collision for $\mathrm{Enc}_{\mathbb{C}}$ (for different keys) directly yields a committing attack

- ► For Photon-Beetle and Xoodyak we can find such collisions
- \blacktriangleright Photon-Beetle and Xoodyak cannot be "patched" via zero-padding to achieve $\mathrm{CMT}_{\mathsf{K}}$ security

Zero-Padding: Elephant

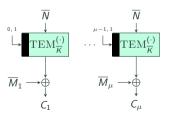
Zero-padding dos not provides $\mathrm{CMT}_{\mathsf{K}}$ security if the number of zeros is smaller than the block length

▶ Assume that we have a ciphertext (C, T) = Enc(K, N, A, M). How to find $(\overline{K}, \overline{N}, \overline{A}, \overline{M})$?

Zero-Padding: ELEPHANT

Zero-padding dos not provides $\mathrm{CMT}_{\mathsf{K}}$ security if the number of zeros is smaller than the block length

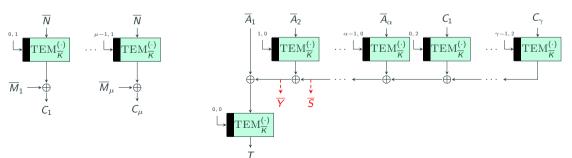
- ▶ Assume that we have a ciphertext (C, T) = Enc(K, N, A, M). How to find $(\overline{K}, \overline{N}, \overline{A}, \overline{M})$?
- ▶ If $\overline{M}_1 = 0^n$, set $\overline{N} \leftarrow \mathrm{TEM}^{-1}(C_1)$ and choose remaining message blocks as before



Zero-Padding: ELEPHANT

Zero-padding dos not provides CMT_K security if the number of zeros is smaller than the block length

- ▶ Assume that we have a ciphertext (C, T) = Enc(K, N, A, M). How to find $(\overline{K}, \overline{N}, \overline{A}, \overline{M})$?
- ▶ If $\overline{M}_1 = 0^n$, set $\overline{N} \leftarrow \text{TEM}^{-1}(C_1)$ and choose remaining message blocks as before
- ▶ For the authentication part, we have to target a different associated data block than \overline{A}_1 , which contains the nonce \overline{N}



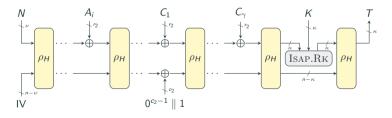
Core idea: birthday attack on the tag

Core idea: birthday attack on the tag

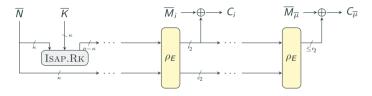
• fix arbitrary key-nonce pair (K, N) and compute an honest ciphertext C by encrypting some message M

Core idea: birthday attack on the tag

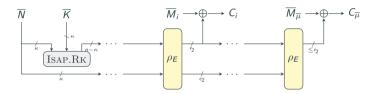
- fix arbitrary key-nonce pair (K, N) and compute an honest ciphertext C by encrypting some message M
- ▶ Try various associated data until a tag collision is found ($\approx 2^{64}$ queries); let A and \overline{A} denote the associated data yielding the collision



By setting $(\overline{K}, \overline{N}, \overline{M}) \leftarrow (K, N, M)$, we get the same ciphertext C during encryption

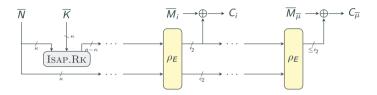


By setting $(\overline{K}, \overline{N}, \overline{M}) \leftarrow (K, N, M)$, we get the same ciphertext C during encryption



- ▶ Outputting $(K, N, A, M), (\overline{K}, \overline{N}, \overline{A}, \overline{M})$ breaks CMT security
 - ► Cost: $\approx 2^{64}$ (find A and \overline{A})
 - ► Committing security of ISAP does *not* increase via zero-padding

By setting $(\overline{K}, \overline{N}, \overline{M}) \leftarrow (K, N, M)$, we get the same ciphertext C during encryption



- ▶ Outputting $(K, N, A, M), (\overline{K}, \overline{N}, \overline{A}, \overline{M})$ breaks CMT security
 - ► Cost: $\approx 2^{64}$ (find A and \overline{A})
 - ► Committing security of ISAP does *not* increase via zero-padding
- lacktriangle Important difference to Ascon : computation of C is independent of the associated data

We analyzed the committing security of ...

▶ ...the generic composition paradigms

We analyzed the committing security of ...

- ▶ ...the generic composition paradigms
- ► ... the NIST LWC finalists

We analyzed the committing security of ...

- ▶ ...the generic composition paradigms
- ► ...the NIST LWC finalists
- lacktriangle . . . the zero-padded versions of several NIST LWC finalists

We analyzed the committing security of \dots

- ▶ ...the generic composition paradigms
- ► ... the NIST LWC finalists
- ▶ ... the zero-padded versions of several NIST LWC finalists

patrick.struck@uni.kn