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Motivation

An authenticated encryption scheme is deemed secure if:

1. an adversary cannot learn anything about the message from a ciphertext

2. an adversary cannot forge a valid ciphertext

Real World Ideal World

EncK (·) DecK (·) $(·) ⊥(·)

A
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Motivation

Attacks have shown that we sometimes require more properties from an AE scheme

▶ Fast message franking attack1

▶ Subscribe with Google attack2

▶ Partitioning oracle attack3

▶ possibly more attacks in the future

1Dodis et al. “Fast Message Franking: From Invisible Salamanders to Encryptment”.
In: CRYPTO 2018. 2018.
2Albertini et al. “How to Abuse and Fix Authenticated Encryption Without Key
Commitment”. In: USENIX 2022. 2022.
3Len, Grubbs, and Ristenpart. “Partitioning Oracle Attacks”. In: USENIX 2021. 2021.
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Motivation

Partitioning Oracle Attack:

Assume that A has a list of leaked keys which contains the correct key

▶ Split the list into two sub-lists L1 and L2

▶ Find a ciphertext that decrypts validly under the keys in L1 and to ⊥ under the keys in L2

▶ Based on the response, A knows if the correct key is in L1 or L2

▶ repeat using the list containing the correct key

Problem: A can construct

ciphertexts that decrypt under

multiple keys

Solution: committing security

K0 K1 K2 K3 K4 K5 K6 K7

K0 K1 K2 K3

K0 K1 K2 K3

K4 K5 K6 K7

K4 K5 K6 K7
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Motivation

Game CMTK

1 : (K ,N,A,M), (K ,N,A,M)← A()

2 : if K = K

3 : return 0

4 : (C ,T )← Enc(K ,N,A,M)

5 : (C ,T )← Enc(K ,N,A,M)

6 : return ((C ,T ) = (C ,T ))

Game CMT

1 : (K ,N,A,M), (K ,N,A,M)← A()

2 : if (K ,N,A) = (K ,N,A)

3 : return 0

4 : (C ,T )← Enc(K ,N,A,M)

5 : (C ,T )← Enc(K ,N,A,M)

6 : return ((C ,T ) = (C ,T ))

Security games CMTK (left) and CMT (right).
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Generic Composition



Generic Composition: Overview

There are three methods of generic composition:

1. Encrypt-and-MAC

2. Encrypt-then-MAC

3. MAC-then-Encrypt

We focus on the so-called N-schemes4

▶ construct an AE scheme from a nonce-based encryption scheme and a MAC

4Namprempre, Rogaway, and Shrimpton. “Reconsidering Generic Composition”. In:
EUROCRYPT 2014. 2014.
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Generic Composition: Overview

N1 (Encrypt-and-MAC)

N

M

A

C

T

Enc

Tag

Ke

Km

N2 (Encrypt-then-MAC)

N

M

A

C

T

Enc

Tag

Ke

Km

N3 (MAC-then-Encrypt)

N

M

A

CEnc

Tag

Ke

Km

We give positive results for N1 and negative results for N2

6



Generic Composition: Overview

N1 (Encrypt-and-MAC)

N

M

A

C

T

Enc

Tag

Ke

Km

N2 (Encrypt-then-MAC)

N

M

A

C

T

Enc

Tag

Ke

Km

N3 (MAC-then-Encrypt)

N

M

A

CEnc

Tag

Ke

Km

We give positive results for N1 and negative results for N2

6



Generic Composition: Overview

N1 (Encrypt-and-MAC)

N

M

A

C

T

Enc

Tag

Ke

Km

N2 (Encrypt-then-MAC)

N

M

A

C

T

Enc

Tag

Ke

Km

N3 (MAC-then-Encrypt)

N

M

A

CEnc

Tag

Ke

Km

We give positive results for N1 and negative results for N2

6



Generic Composition: Overview

N1 (Encrypt-and-MAC)

N

M

A

C

T

Enc

Tag

Ke

Km

N2 (Encrypt-then-MAC)

N

M

A

C

T

Enc

Tag

Ke

Km

N3 (MAC-then-Encrypt)

N

M

A

CEnc

Tag

Ke

Km

We give positive results for N1 and negative results for N2

6



Committing Security of N1 (Encrypt-and-MAC)

N1 (Encrypt-and-MAC)

N

M

A

C

T

Enc

Tag

Ke

Km

Theorem (Committing Security of N1)

Let Se be a symmetric encryption scheme and Mac be a MAC.

Let further N1[Se,Mac] be the authenticated encryption

scheme obtained via the N1 construction using Se and Mac.

Then for any adversary A there exist adversaries B and C such

that

AdvCMT
N1[Se,Mac](A) ≤ AdvwCRSe (B) + AdvCRMac(C) .

Committing security of N1 reduces to collision resistance of the underlying MAC and a weak

form of collision resistance of the underlying encryption
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Committing Security of N1 (Encrypt-and-MAC)

N1 (Encrypt-and-MAC)

N

M

A

C

T

Enc

Tag

Ke

Km

Game CR

(K ,X ), (K ,X )← A()

if (K ,X ) = (K ,X )

return 0

T ← Tag(K ,X )

T ← Tag(K ,X )

return (T = T )

Game wCR

(K ,N,M), (K ,N,M)← A()

if K = K ∨ (N,M) ̸= (N,M)

return 0

C ← Enc(K ,N,M)

C ← Enc(K ,N,M)

return (C = C)

Security game CR for MACs and wCR for symmetric encryption.

Weak collision-resistant encryption: adversary needs to find distinct keys and one

nonce-message pair that result in the same ciphertext

▶ finding arbitrary collisions (for tidy encryption schemes) is easy
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Committing Security of N1 (Encrypt-and-MAC)

Proof idea: for the output ((Ke ,Km),N,A,M), ((K e ,Km),N,A,M) by A, distinguish between

the following cases:

1. Ke ̸= K e ∧ (N,M) = (N,M):

In this case, A breaks wCR security of the underlying encryption

2. Ke = K e ∨ (N,M) ̸= (N,M):

In this case, it holds that (Km,N,A,M) ̸= (Km,N,A,M) which implies that A

breaks CR security of the MAC

9
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Committing Security of N1 (Encrypt-and-MAC)

Are there schemes that satisfy the required properties?

We show that the encryption scheme and MAC of Slae5 (a derivate of Isap) achieve wCR

and CR, respectively

5Degabriele, Janson, and Struck. “Sponges Resist Leakage: The Case of Authenticated
Encryption”. In: ASIACRYPT 2019. 2019.
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Committing Attack against N2 (Encrypt-then-MAC)

N2 (Encrypt-then-MAC)

N

M

A

C

T

Enc

Tag

Ke

Km

Theorem (Committing Security of N2)

Let Se be a symmetric encryption scheme and Mac be a

MAC. Let further N2 [Se,Mac] be the authenticated

encryption scheme obtained via the N2 construction using

Se and Mac. Then there exists an adversary A such that

AdvCMT
N2[Se,Mac](A) = 1 .

Gist: since N2 authenticates the ciphertext (not the message like N1), finding a ciphertext

collision is sufficient

▶ not a restricted collision as was the case for N1
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Committing Attack against N2 (Encrypt-then-MAC)

N

M

CEnc

Ke

A

TTag

Km

N

M

CEnc

K e

A

TTag

Km

Adversary A

Ke ,N,M ←$K ×N ×M

C ← Se.Enc(Ke ,N,M)

K e ←$K\{Ke}

M ← Se.Dec(K e ,N,C) // by tidyness: C = Se.Enc(K e ,N,M)

(Km,A)←$K ×A

return ((Ke ,Km),N,A,M), ((K e ,Km),N,A,M)

▶ Attack exploits independent keys for underlying

encryption scheme and MAC

▶ Attack does not work if keys are derived via a

pseudorandom generator from some master key

▶ Attack also does not carry over to more practical

AE schemes
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NIST Lightweight Cryptography Finalists



NIST Lightweight Cryptography (LWC) Standardization

Timeline

▶ August 2018:

Call for algorithms

▶ April 2019:

56 round-1 candidates

▶ August 2019:

32 round-2 candidates

▶ March 2021:

10 finalists

▶ February 2023:

Ascon selected to be standardized

Finalists:

1. Ascon
2. Elephant
3. Gift-Cofb
4. Grain-128aead
5. Isap
6. Photon-Beetle
7. Romulus
8. Schwaemm
9. TinyJambu
10. Xoodyak

We analyze the committing security of all finalists except Grain-128aead (which uses a

dedicated design)

▶ we focus on the modes of operation, assuming underlying components to be ideal

13
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NIST LWC Finalists: Classification

Encrypt-then-MAC AE schemes

EncM

EncT

M

N

K

A

C

T

Elephant and Isap follow this design

▶ difference to N2: only a single key

Context-pre-Processing AE schemes

EncC

EncM

A

N

K

M

S

(C ,T )

Ascon, Gift-Cofb, Photon-Beetle,

Romulus, Schwaemm, TinyJambu, and

Xoodyak follow this design

▶ dashed/dotted line only present in some

schemes

Main focus of this talk: Encrypt-then-MAC AE schemes
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Results: Overview

▶ Attacks with minimal costs against four

schemes (✗):

Romulus, Elephant, Gift-Cofb, and

Photon-Beetle

▶ Attacks with significantly less than 264 queries

against two schemes (✦):

TinyJambu and Xoodyak

▶ Proofs showing about 64-bit committing

security for three schemes (✓):

Ascon, Isap, and Schwaemm

Scheme CMT

Romulus ✗

Elephant ✗

Gift-Cofb ✗

Photon-Beetle ✗

TinyJambu ✦

Xoodyak ✦

Ascon ✓

Isap ✓

Schwaemm ✓
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Results: Overview

Attacks boil down to one of the following properties:

▶ The whole state is adversary-controlled

(Romulus, Elephant, Gift-Cofb)

▶ true for the initial state

(Photon-Beetle)

▶ The adversary-controlled state is too large

(Xoodyak)

▶ The tag is too short

(TinyJambu)
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Elephant

▶ Elephant is based on a public

permutation

▶ The permutation is used in a

tweakable Even-Mansour style

▶ Upper part: encryption

▶ Lower part: authenticationa

▶ Observations:

1. via A1, we have full control

over the state during

authentication

2. via the message, we have full

control over the ciphertext

during encryption

aA1 contains the nonce N.
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. . . TEM
(·)
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(·)
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. . . TEM
(·)
K TEM
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Elephant

Committing attack:

1. Choose (K ,N,A,M) and compute the ciphertext (C ,T )

2. Choose K , A2, . . . , Aα, and compute the states Y and S

3. Set A1 ← Y ⊕ S (note that this also determines the nonce N)

4. Choose M that, using K and N, encrypts to C

TEM
(·)
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. . . TEM
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N N
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Elephant: Committing Attack

Theorem

Consider Elephant as shown above. Let TEM be modeled as an ideal tweakable cipher Ẽ.

Then there exists an adversary A, making q queries to Ẽ, such that

AdvCMT
Elephant(A) = 1 ,

where q = 2µ+ 2γ + α+ α. Here, µ is the number of message blocks while computing

EncM and γ is the number of ciphertext blocks while computing EncT.
6 Furthermore, α

and α are the number of associated data blocks for the two tuples that A outputs.

6Note that µ and γ might not be the same.
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Isap

▶ Isap is based on a public

permutation

▶ It features a re-keying

function Isap.Rk to

achieve resilience against

side-channel leakage

▶ Upper part: encryption

▶ Lower part: authentication

Isap.Rk ρE ρE
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Isap: Re-Keying Function

▶ Re-Keying function Isap.Rk is a plain sponge construction

▶ Core property: rate is set to 1 to minimize the effect of side-channel leakage

ρK ρB ρK
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IV

Xi Xx K∗
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/
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/
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/
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/

z
/
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Isap: Committing Security

Proof idea:

▶ model Isap as a plain sponge with an increased rate to handle its special features

(re-keying function and domain separation)
▶ Collision resistance of the plain sponge construction yields committing security
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Isap: Committing Security

Theorem

Consider Isap as shown above. Let ρ1 and ρ2 be modeled by ideal permutations ρ1 and ρ2,

respectively. Then for any adversary A making q1 and q2 queries to ρ1 and ρ2, respectively, it

holds that

AdvCMT
Isap (A) ≤ q1(q1 − 1)

2κ
+

q1(q1 + 1)

2n−κ
+

q2(q2 − 1)

2κ
+

q2(q2 + 1)

2n−max{κ,r2+1} .

Dominant terms (for NIST parameter sets): q1(q1−1)
2κ and q2(q2−1)

2κ

▶ Committing security can be increased by increasing κ (length of tags and session keys)

▶ but only up to κ = n/2 (at which point the other terms become dominant)
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Zero-Padding



Zero-Padding

Prepend zeros to the message prior to encryption:

zp-Ae.Enc(K ,N,A,M) := Ae.Enc(K ,N,A, 0z ∥ M)

“Lightweight” method to achieve CMTK security

▶ neither claimed nor proven to work for all schemes

▶ Zero-padding was shown to improve CMT security of Ascon7

7Naito, Sasaki, and Sugawara. “Commiting Security of Ascon: Cryptanalysis on
Primitive and Proof on Mode”. In: ToSC 2023 (4). 2023.
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Zero-Padding

We ask two questions regarding zero-padding:

1. Can we achieve CMTK security for the schemes that are not CMT secure?

2. Can we increase CMT security for the secure schemes?

25



Zero-Padding

We ask two questions regarding zero-padding:

1. Can we achieve CMTK security for the schemes that are not CMT secure?

2. Can we increase CMT security for the secure schemes?

25



Zero-Padding: Photon-Beetle and Xoodyak

Context-pre-Processing AE schemes

EncC

EncM

A

N

K

M

S

(C ,T )

Full-Context-pre-Processing AE schemes

EncC

EncM

A

N

K

M

S

(C ,T )

Full-Context-pre-Processing AE schemes:

Photon-Beetle and Xoodyak

Finding a collision for EncC (for different keys) directly yields a committing attack

▶ For Photon-Beetle and Xoodyak we can find such collisions

▶ Photon-Beetle and Xoodyak cannot be “patched” via zero-padding to achieve

CMTK security
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Zero-Padding: Elephant

Zero-padding dos not provides CMTK security if the number of zeros is smaller than the block

length

▶ Assume that we have a ciphertext (C ,T ) = Enc(K ,N,A,M). How to find (K ,N,A,M)?

▶ If M1 = 0n, set N ← TEM−1(C1) and choose remaining message blocks as before
▶ For the authentication part, we have to target a different associated data block than A1,

which contains the nonce N

TEM
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. . . TEM
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Zero-Padding: Isap

Core idea: birthday attack on the tag

▶ fix arbitrary key-nonce pair (K ,N) and compute an honest ciphertext C by encrypting

some message M

▶ Try various associated data until a tag collision is found (≈ 264 queries); let A and A

denote the associated data yielding the collision

ρH ρH ρH ρH ρHIsap.Rk

. . .

. . .

. . .

. . .

. . .

. . .

N

IV
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κ
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Zero-Padding: Isap

By setting (K ,N,M)← (K ,N,M), we get the same ciphertext C during encryption

Isap.Rk ρE ρE

. . .

. . .

. . .

. . .

N K M i MµCi Cµ

κ
/

κ/

κ
/
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/

≤r2

/

▶ Outputting (K ,N,A,M), (K ,N,A,M) breaks CMT security

▶ Cost: ≈ 264 (find A and A)
▶ Committing security of Isap does not increase via zero-padding

▶ Important difference to Ascon: computation of C is independent of the associated data

29



Zero-Padding: Isap

By setting (K ,N,M)← (K ,N,M), we get the same ciphertext C during encryption

Isap.Rk ρE ρE

. . .

. . .

. . .

. . .

N K M i MµCi Cµ

κ
/

κ/

κ
/

n−κ
/

r2
/

c2
/

≤r2

/

▶ Outputting (K ,N,A,M), (K ,N,A,M) breaks CMT security

▶ Cost: ≈ 264 (find A and A)
▶ Committing security of Isap does not increase via zero-padding

▶ Important difference to Ascon: computation of C is independent of the associated data

29



Zero-Padding: Isap

By setting (K ,N,M)← (K ,N,M), we get the same ciphertext C during encryption

Isap.Rk ρE ρE

. . .

. . .

. . .

. . .

N K M i MµCi Cµ

κ
/

κ/

κ
/

n−κ
/

r2
/

c2
/

≤r2

/

▶ Outputting (K ,N,A,M), (K ,N,A,M) breaks CMT security

▶ Cost: ≈ 264 (find A and A)
▶ Committing security of Isap does not increase via zero-padding

▶ Important difference to Ascon: computation of C is independent of the associated data

29



Conclusion

We analyzed the committing security of . . .

▶ . . . the generic composition paradigms

▶ . . . the NIST LWC finalists

▶ . . . the zero-padded versions of several NIST LWC finalists

Thank You!
patrick.struck@uni.kn
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