Indifferentiability of 6-round Luby-Rackoff

Mridul Nandi (ISI)

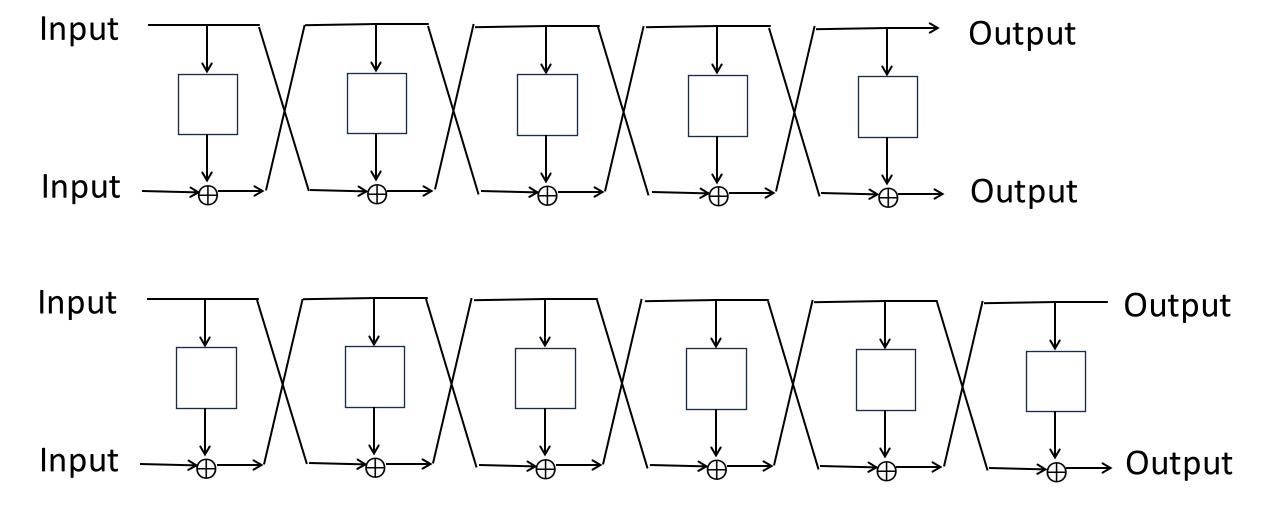
Joint work with

Ritam Bhaumik (TII), Ashwin Jha (RUB), Sayantan Pal (ISI) and Abishanka Saha (TU/e)

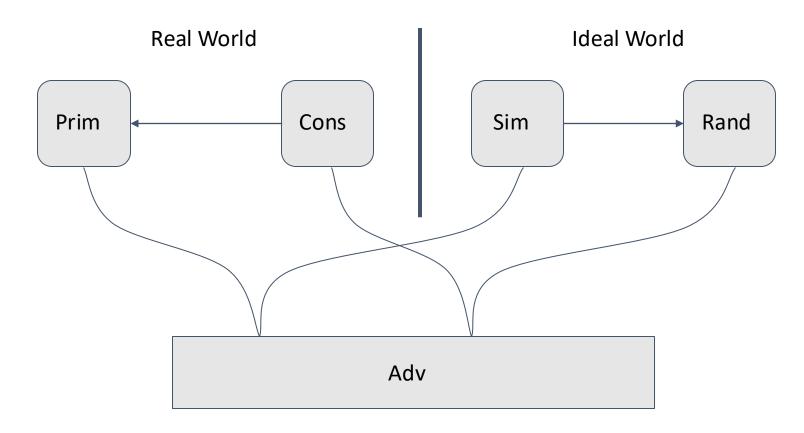
GAPS, NTU, Singapore

3rd September, 2025

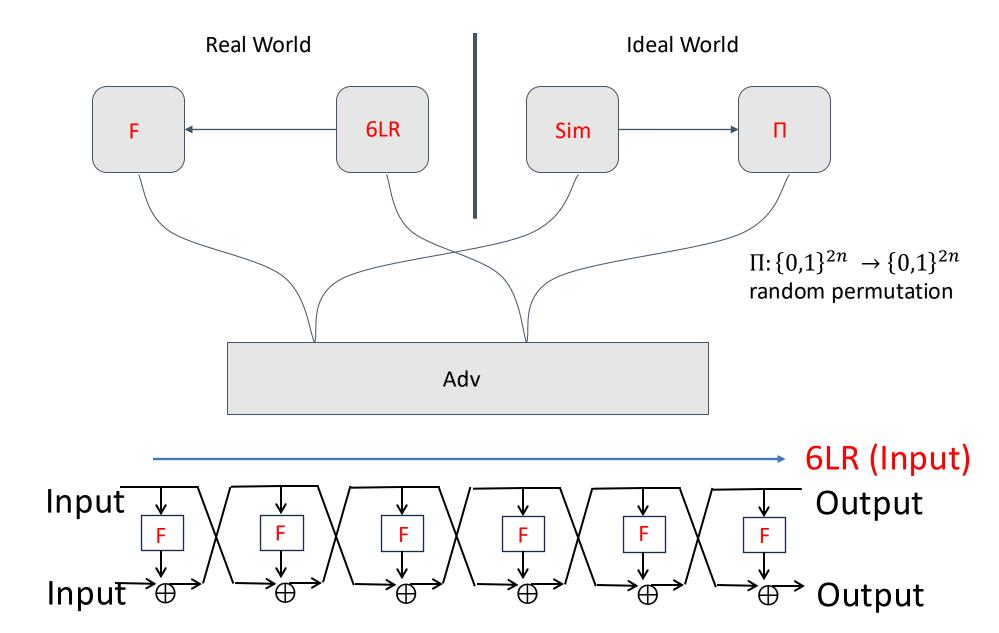
5LR / 6LR



Indifferentiability Security Notion



Indifferentiability Security Notion



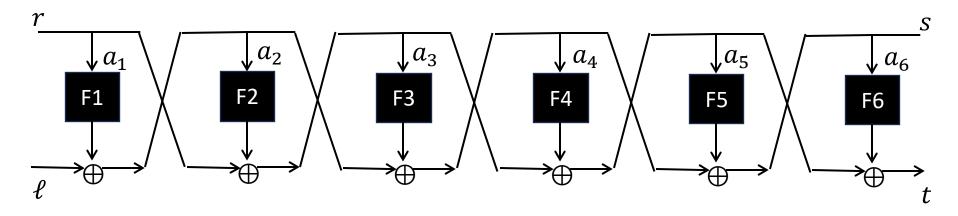
History

- 5 Rounds (Insecure): Coron, Patarin, and Seurin in Crypto 2008
- 6 Rounds: Coron, Patarin, and Seurin in Crypto 2008
- Issue and 14 Rounds: Holenstein, Kunzler, Tessaro in STOC 2011.

- 10 Rounds: Dachman-Soled, Katz, Thiruvengadam in Eurocrypt 2016
- 8 Rounds: Dai, Stenberger CRYPTO 2016

Basic Proof Steps

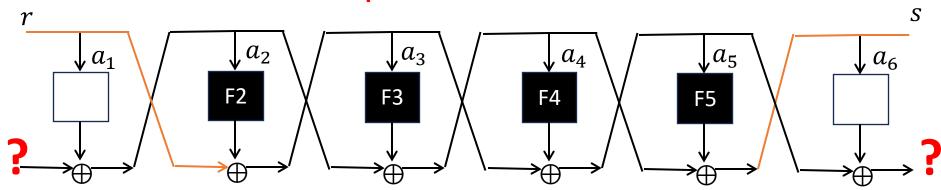
- Simulator must behave like random (so are outputs of F1,... F6).
- Assume, after all queries, additional primitive queries made so that construction queries $6LR(\ell,r)=(s,t)$ can be computed completely.



Ideal World: we must have same relation

$$6LR^{Sim}(\ell,r) = \Pi(\ell,r)$$

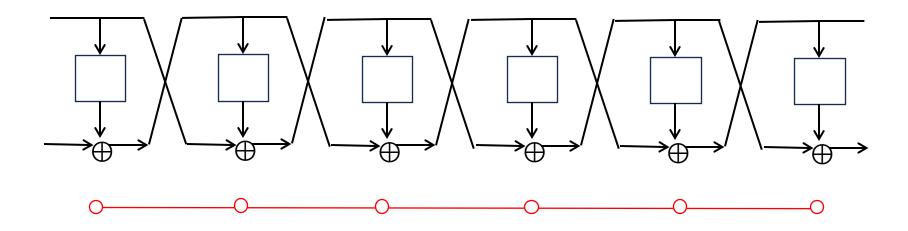
Basic Proof Steps



• If Sim returns four consecutive compatible F queries without taking help of Construction Oracle then it needs to find ℓ , t such that

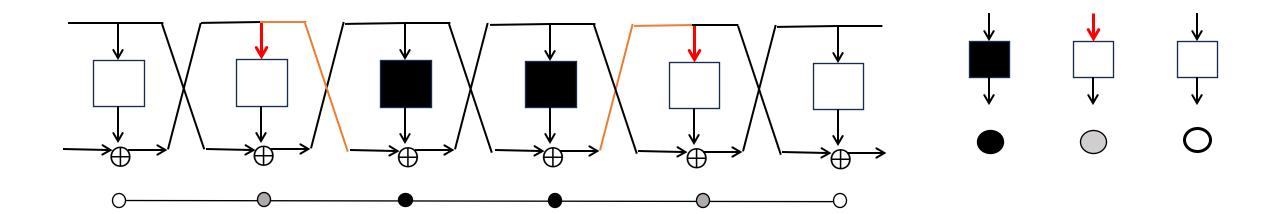
$$\Pi(\ell,r) = (s,t)$$

- Hard. So, Sim must
 - check all such consecutive F queries before and
 - pre-emptively it should make construction oracle queries to make it consistent.



Line System of a Transcript (P, F)

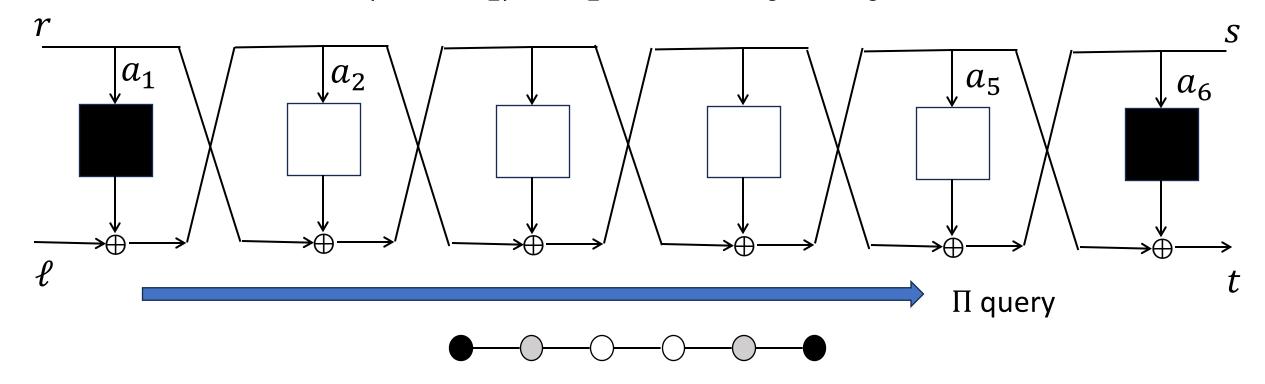
☐ Line Representation of LR Computation



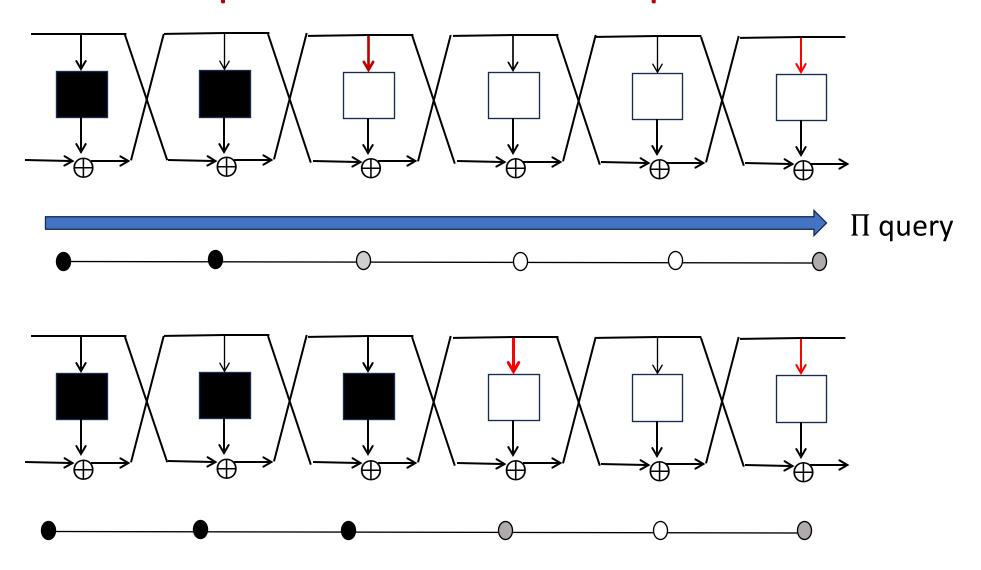
☐ Line Representation of LR Computation

Construction Query: $6LR(\ell,r) = (s,t)$

Primitive Query: $F(r := a_1) = b_1$, $F(s = a_6) = b_6$



☐ Line Representation of LR Computation

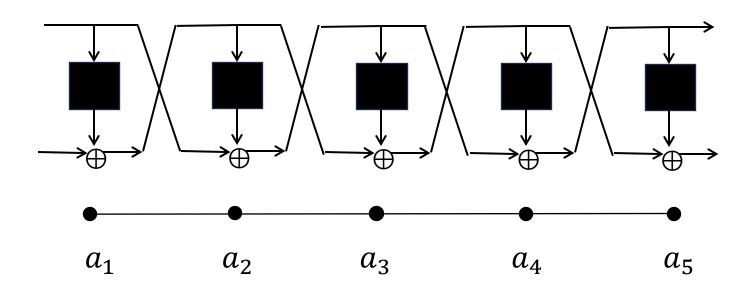


Relationship among input and outputs of F in LR

$$F(a_2) = a_1 + a_3, F(a_3) = a_2 + a_4, F(a_4) = a_3 + a_5, F(a_5) = a_4 + a_6$$

 $\Pi(F(a_1) + a_2, a_1) = (a_6, F(a_6) + a_5)$

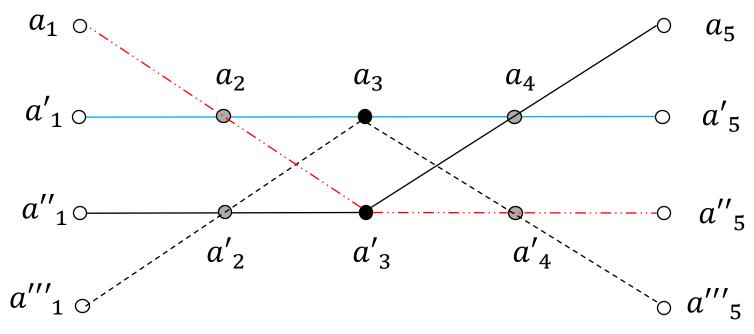
$$F(a_3) = a_2 + a_4$$
, $F(a_4) = a_3 + a_5$, a_1, a_6 unknown



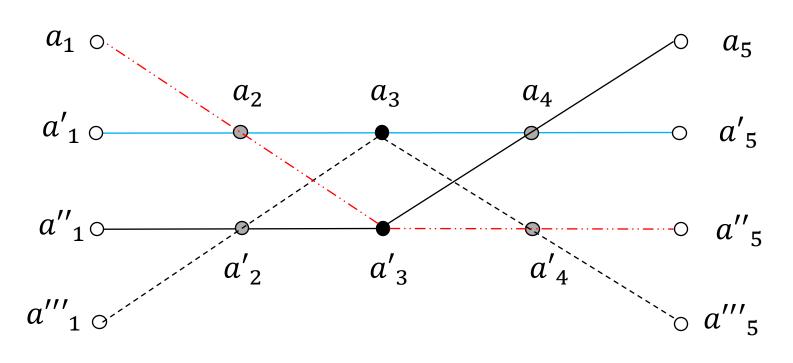
$$F(a_2) = a_1 + a_3$$
, $F(a_3) = a_2 + a_4$, $F(a_4) = a_3 + a_5$

$$a_2$$
 a_3 a_4
 \circ \bullet \circ
 a'_2 a'_3 a'_4

- Make Primitive queries a_3 , a_3^\prime and responses b_3 , b_3^\prime
- Choose a_2 random.
- Define $a_4 = a_2 \oplus b_3$, $a'_4 = a_2 \oplus b'_3$, $a'_2 = a_4 \oplus b'_3 \Rightarrow a'_2 \oplus a'_4 = b_3$



- Make Primitive queries a_3 , a_3' and responses b_3 , b_3'
- Choose a_2 random.
- Define $a_4 = a_2 \oplus b_3$, $a'_4 = a_2 \oplus b'_3$, $a'_2 = a_4 \oplus b'_3 \Rightarrow a'_2 \oplus a'_4 = b_3$

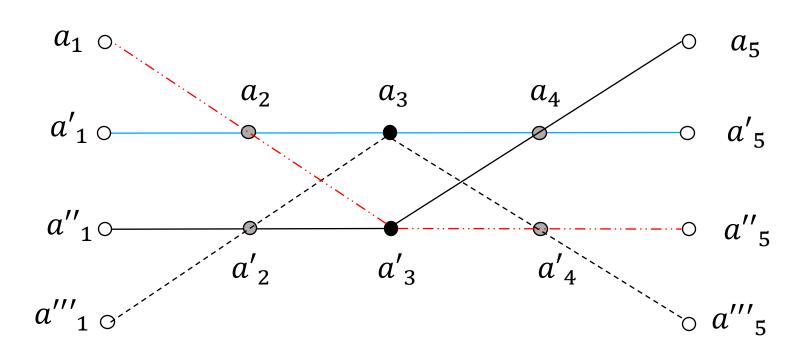


$$5LR(*, a_{1}) = (a_{5}, *)$$

$$5LR(*, a'_{1}) = (a'_{5}, *)$$

$$5LR(*, a''_{1}) = (a''_{5}, *)$$

$$5LR(*, a'''_{1}) = (a'''_{5}, *)$$



$$5LR(*, a_{1}) = (a_{5}, *)$$

$$5LR(*, a'_{1}) = (a'_{5}, *)$$

$$5LR(*, a''_{1}) = (a''_{5}, *)$$

$$5LR(*, a'''_{1}) = (a'''_{5}, *)$$

$$5LR(*, a'''_{1}) = (a'''_{5}, *)$$

Hard !!

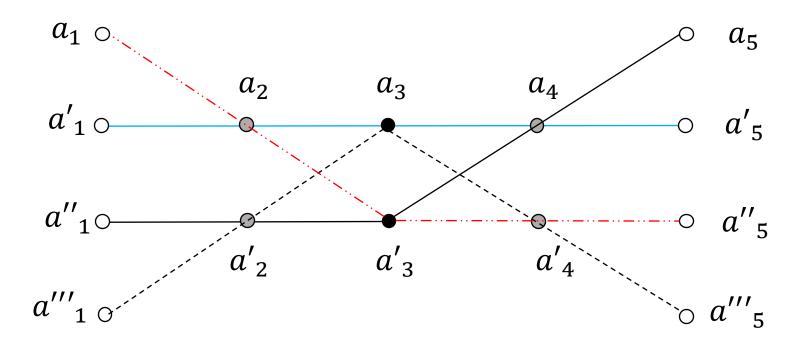
$$\Pi(*, a_1) = (a_5, *)$$

$$\Pi(*, a'_1) = (a'_5, *)$$

$$\Pi(*, a''_1) = (a''_5, *)$$

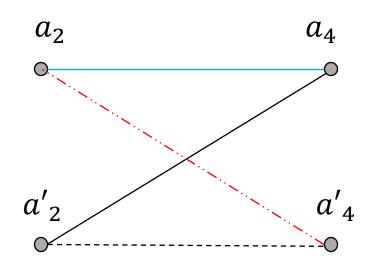
$$\Pi(*, a'''_1) = (a'''_5, *)$$

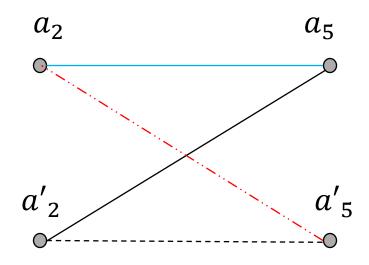
Insecurity of 5LR



For each line, edges between two Oertices

Cycles

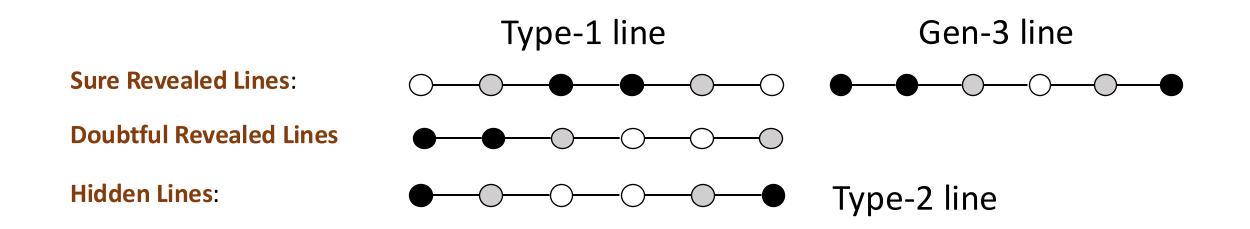




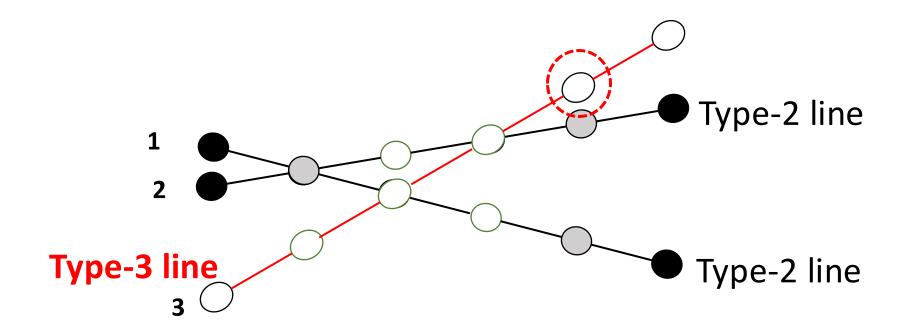
$$\Rightarrow b_3 \oplus b_4 \oplus b_3' \oplus b_4' = 0$$

Constructing Cycle is NOT EASY in 6LR....

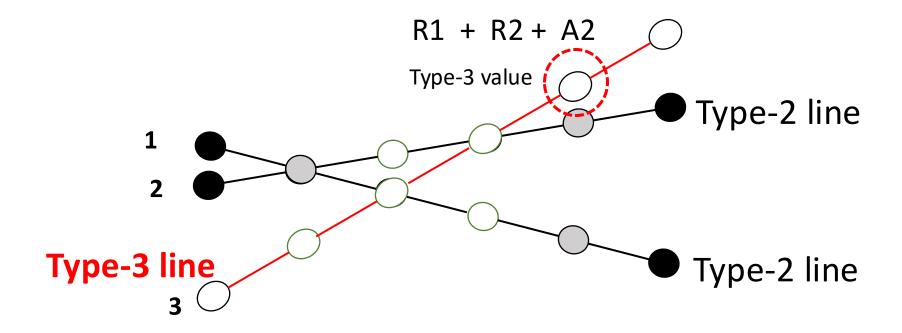
- Disjoint Shores of points: \mathbb{S}_1 , \mathbb{S}_2 , ..., \mathbb{S}_6
- 1/R 2/X 3/Y 4/Z 5/A 6/S
- Line Geometry: set of lines, no two lines intersect at more than one points.
- Each point is coloured: Black, White and Grey.



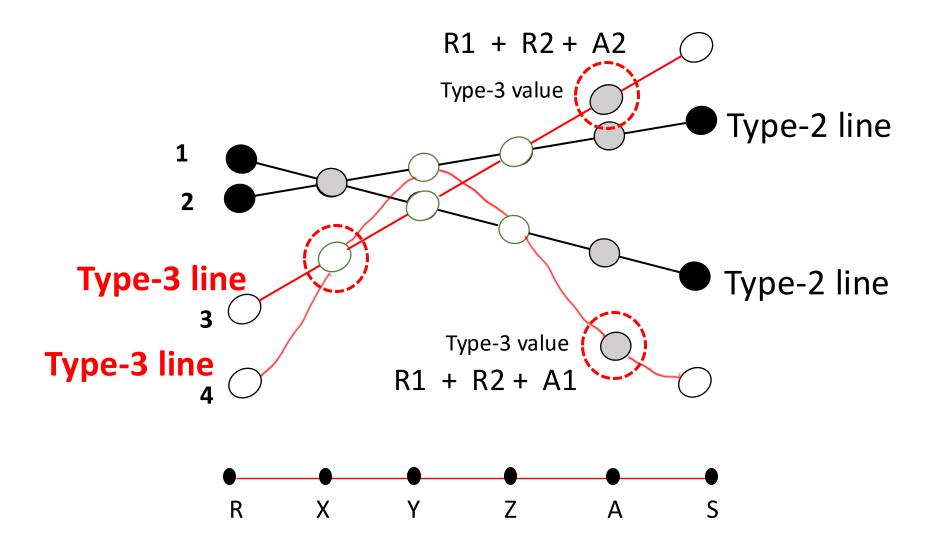
Type-3 Lines



Type-3 Lines



Type-3 Lines

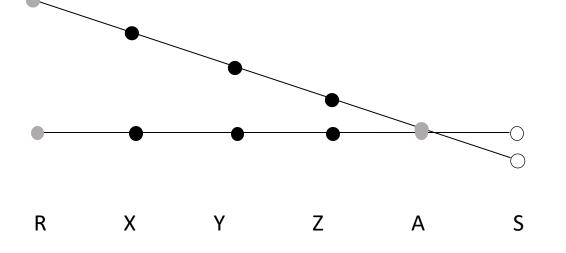


Basic Simulation and Issue

Simulation Fails

Case 1

Case 2



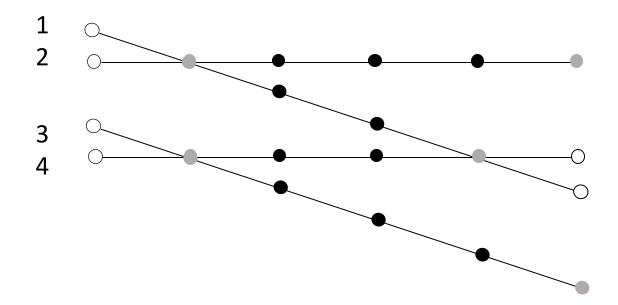
Sample 1 and then forward construction query does not guarantee 6

Sample 6 and then backward construction query does not guarantee 1

$$\Pi(\ell,r) = (s,t)$$

R1 and R2 fixed and S1 + S2 = Z1 + Z2 $\Pi(R1,*) + \Pi(R2,*) = constant$

Simulation Fails



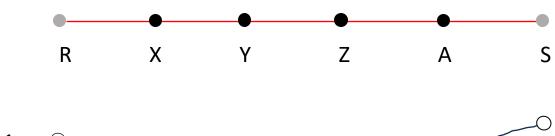
S2 and S3 fixed

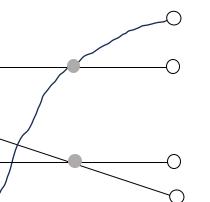
$$R2 + R1 = Y1 + Y2$$

$$S1 + S4 = Z1 + Z4$$

$$S4 + S3 = Y3 + Y4$$

Simulation Fails





Cycle in 2-5 Line Graph

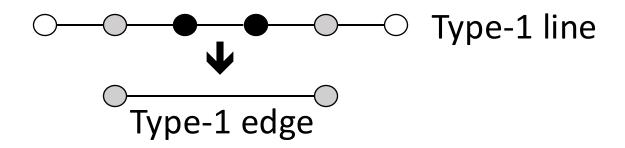
$$S1 + S2 + S3 + S4$$
 fixed

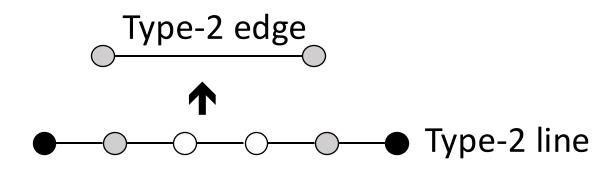
$$Y1 + [Y1] + ... + Y4 + [Y4] +$$

 $Z1 + [Z1] + ... + Z4 + [Z4] = 0$

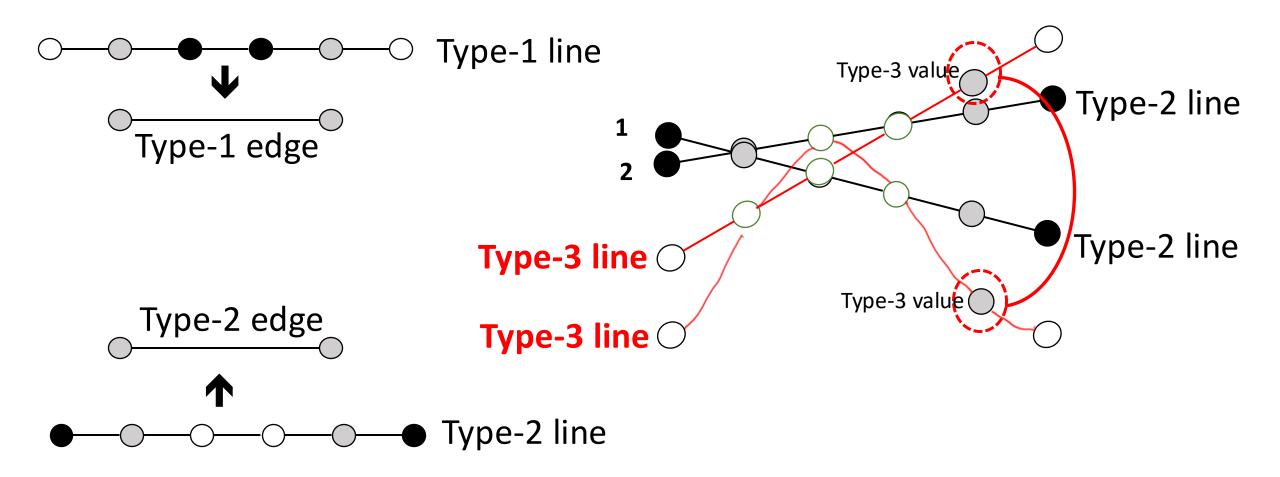
This holds with low prob in real world.

How do we capture all these?



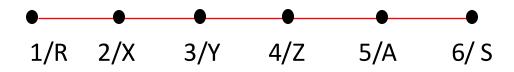


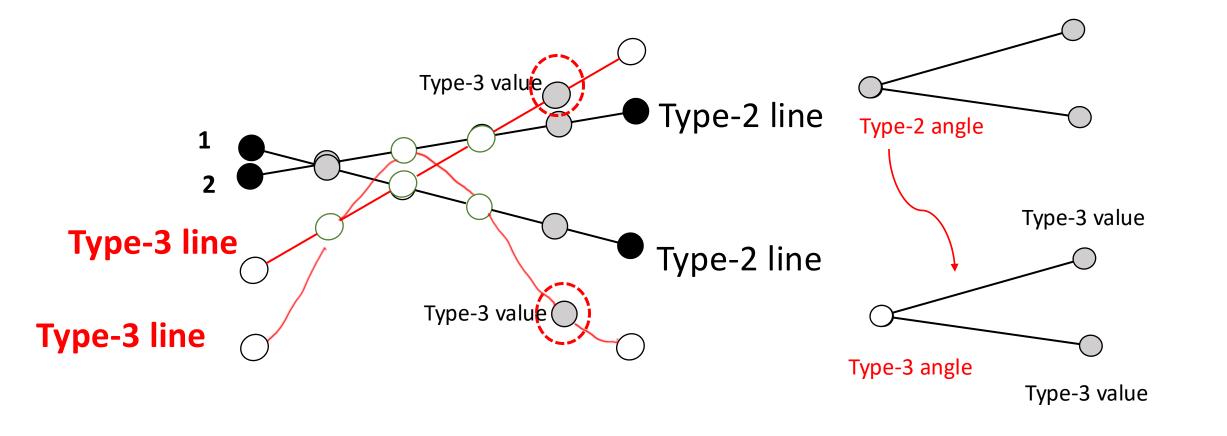
Line Graph

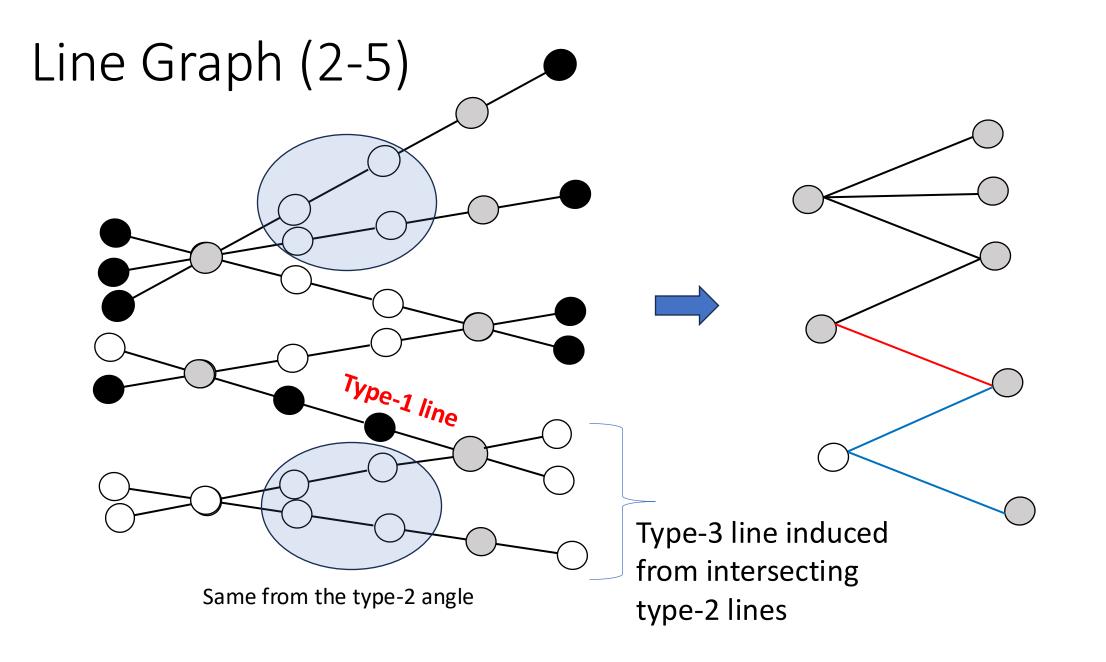


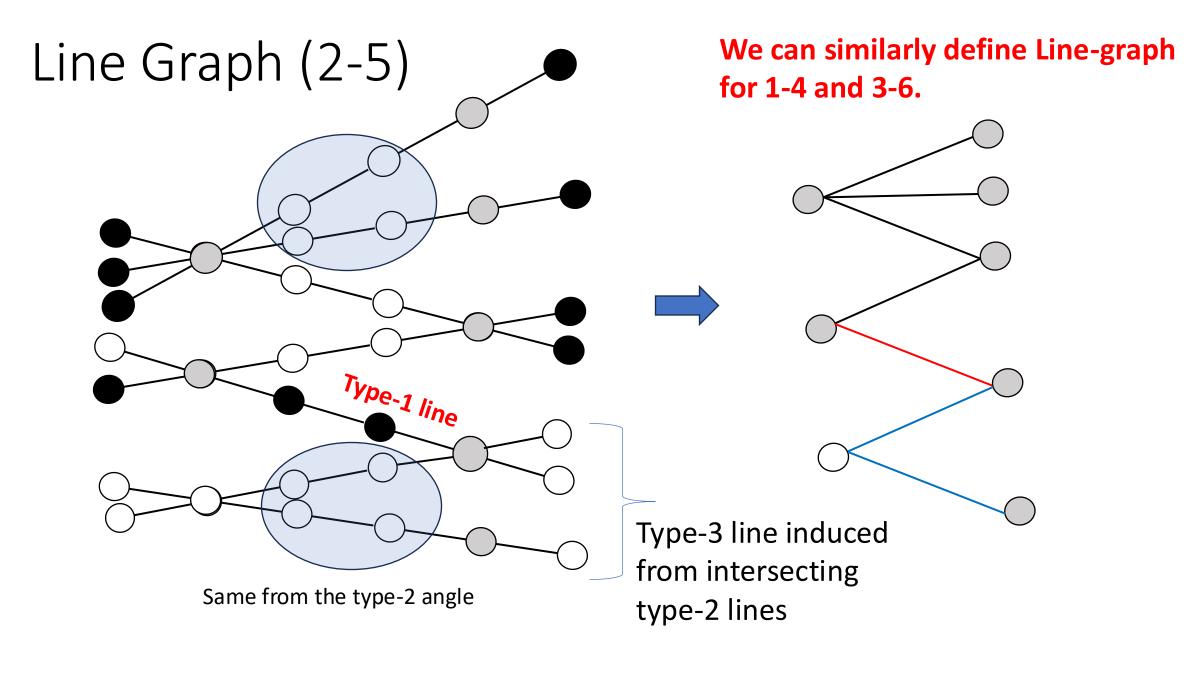
Line Graph

type-3 edges induced from type-2 angle









Simulator (Coron et al. Crypto 2008)

Simulation Steps to make • • • • •

Type-2 line

Simulation Steps to make

Type-2 line

Sample (if required) 2 and 5

$$a_3 = F(a_2) + a_1$$

 $F(a_3) = a_2 + a_4$

$$a_4 = F(a_5) + a_6,$$

 $F(a_4) = a_3 + a_5$

Simulation Steps to make

Type-2 line

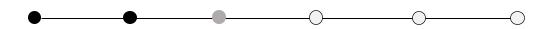
Sample (if required) 2 and 5

$$a_3 = F(a_2) + a_1$$

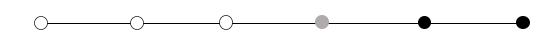
 $F(a_3) = a_2 + a_4$

$$a_4 = F(a_5) + a_6,$$

 $F(a_4) = a_3 + a_5$

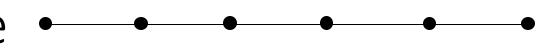


Forward Construction Query and then as before \rightarrow



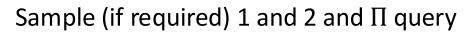
Similarly we first apply Backward Construction Query →

Simulation Steps to make





Option 1: Forward Direction

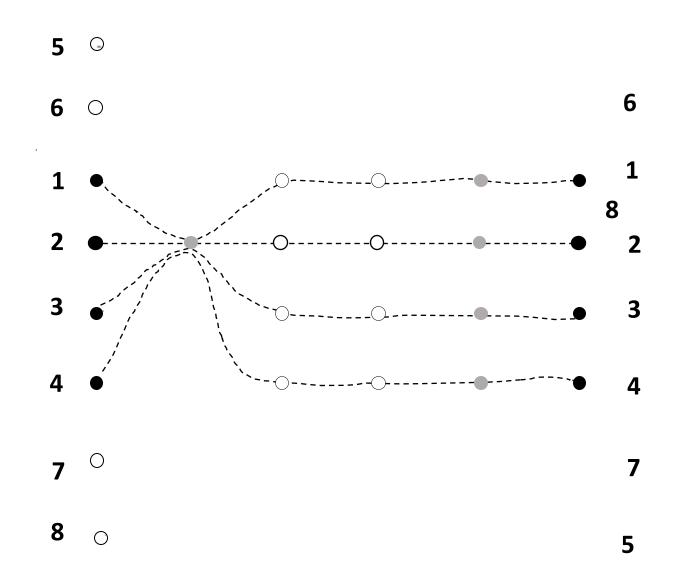


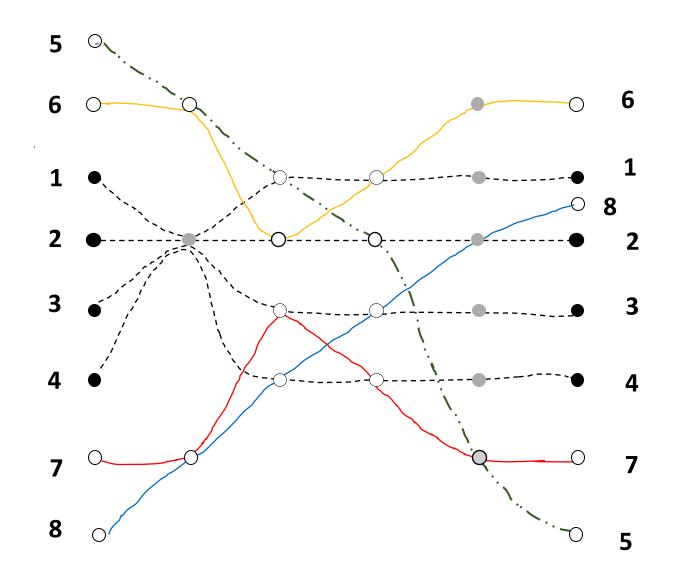
Forward Construction Query

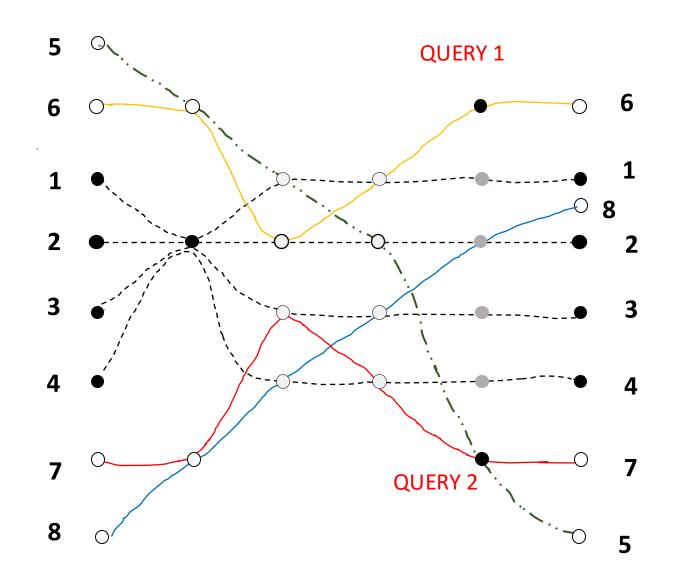
Set
$$F(a_5) = a_4 + a_6$$
, $F(a_6) = a_5 + t$

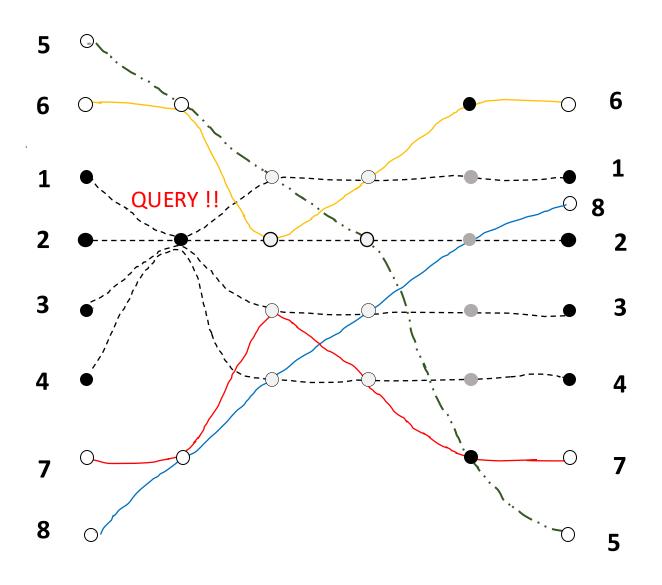
Sample (if required) 5 and 6 and Π^{-1} query

• • •



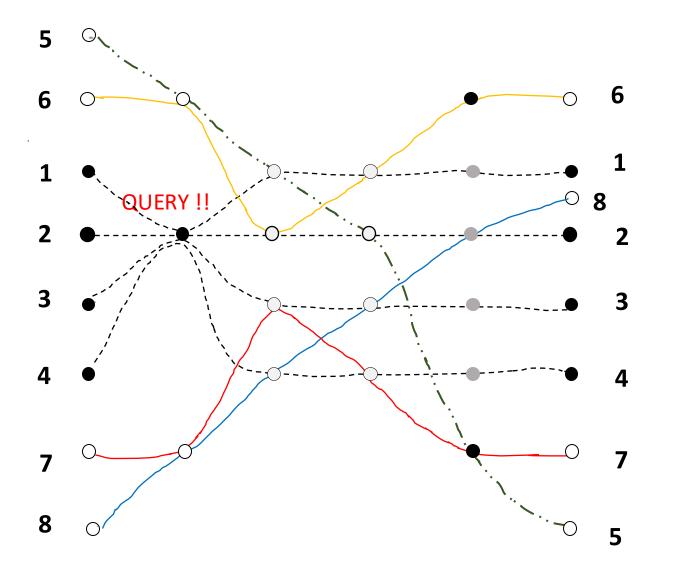


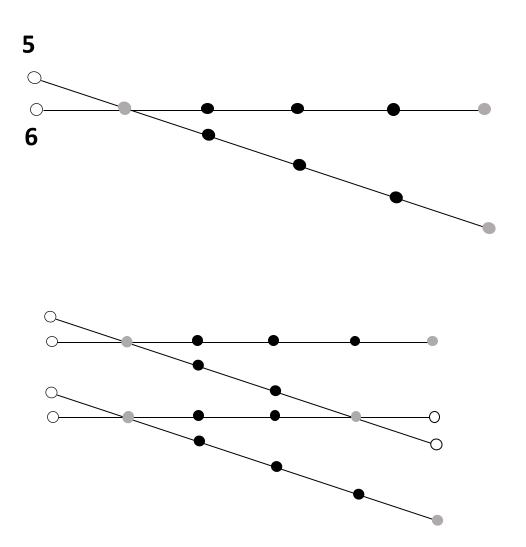


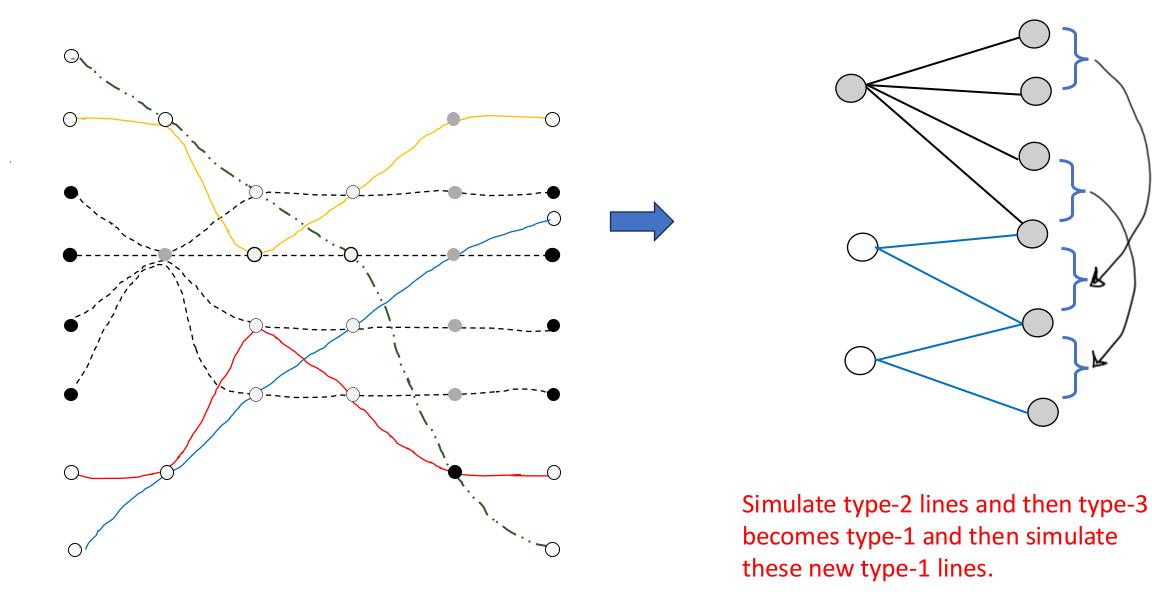


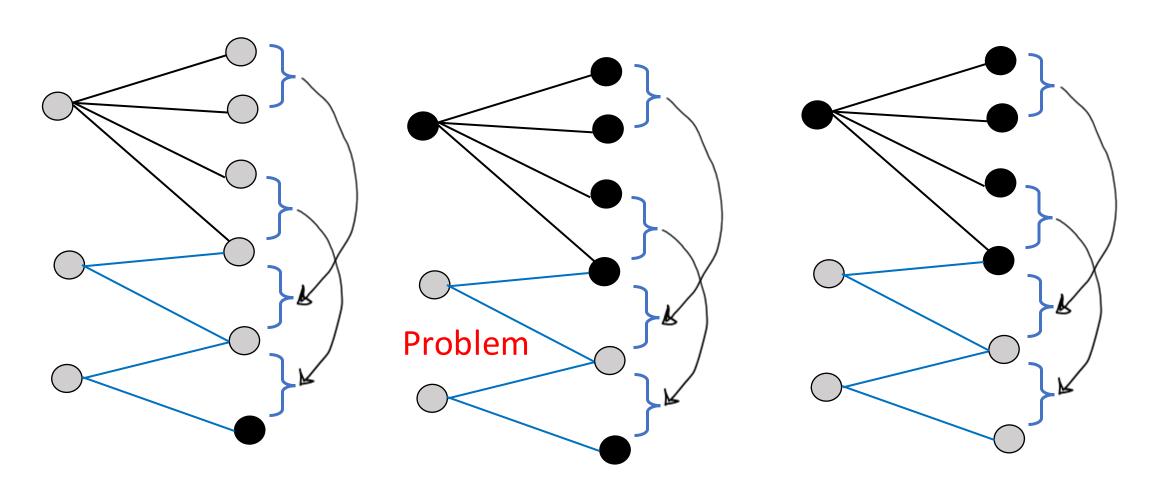
Gen 3 Lines are revealed and start simulating lines

Gen 3 Lines are revealed and start simulating lines



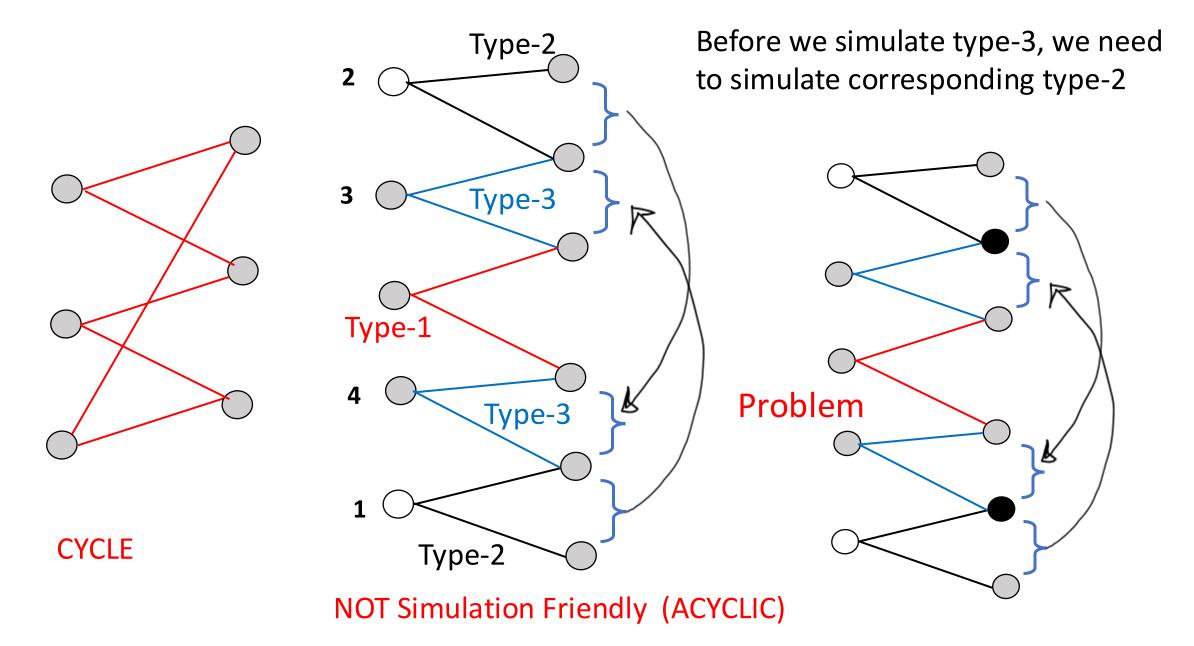




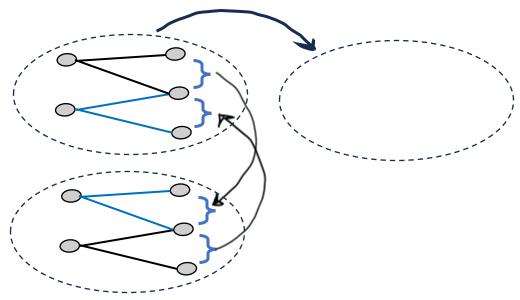


Simulate 4 type-2 lines and then type-3 lines in order

HARD TO SIMULATE



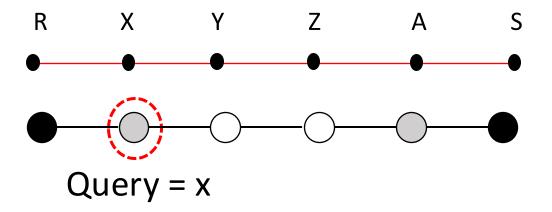
Extended Component



Part 6 Simulator Description

Main Steps:

- CompTrace(u): Identify 2-5 component (extended) C containing u.
- It was hidden but must be revealed after Sim knows u.

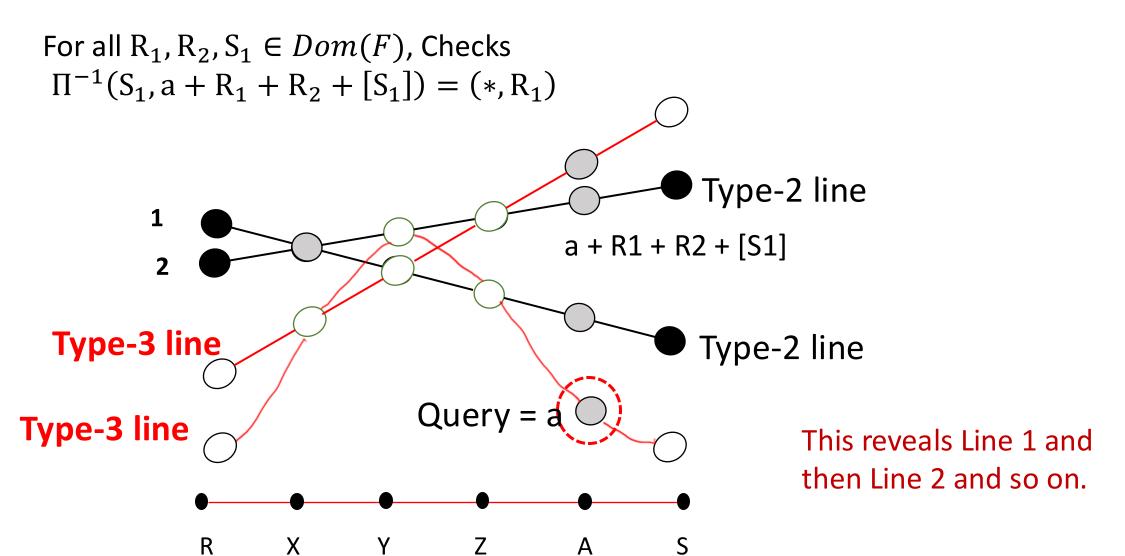


For all
$$R_1 \in Dom(F)$$
 Checks $\Pi(x + [R_1], R_1) = (S_1, *), \qquad S_1 \in Dom(F)$

This reveals A1. We can continue...

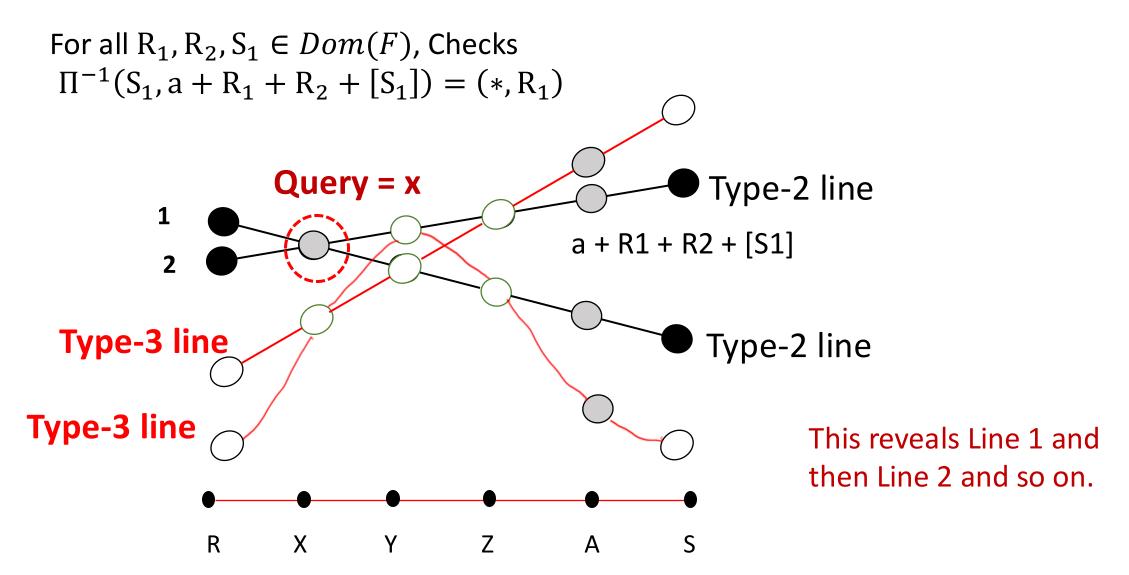
Main Steps:

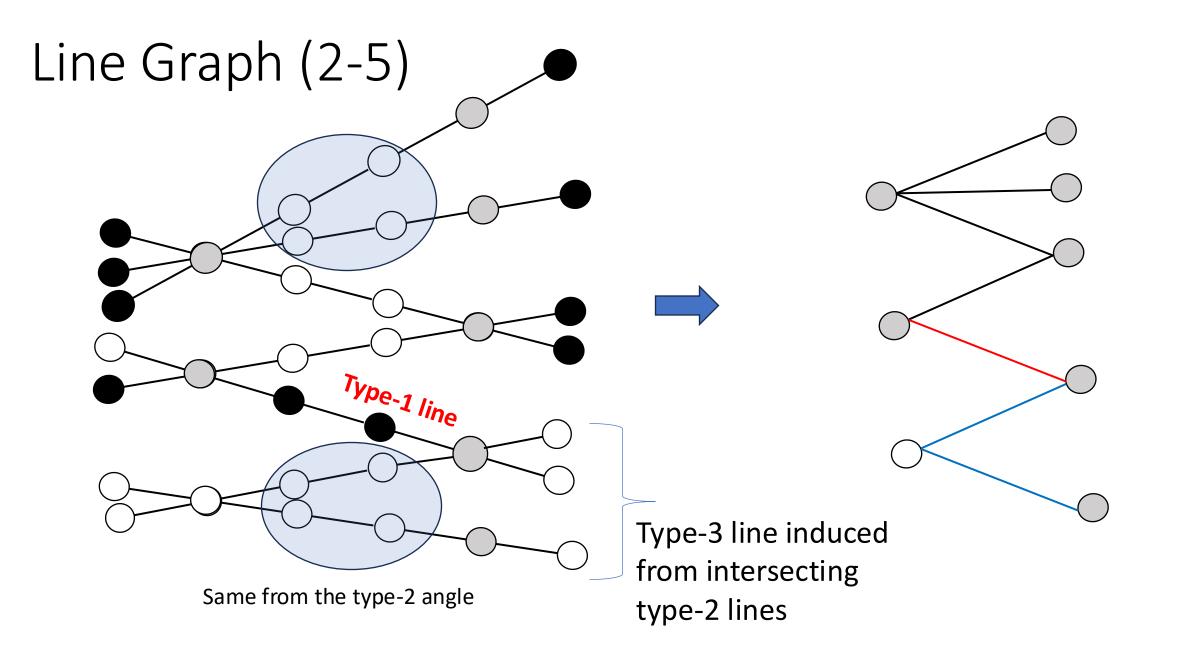
• CompTrace(u): Identify 2-5 component (extended) C containing u.



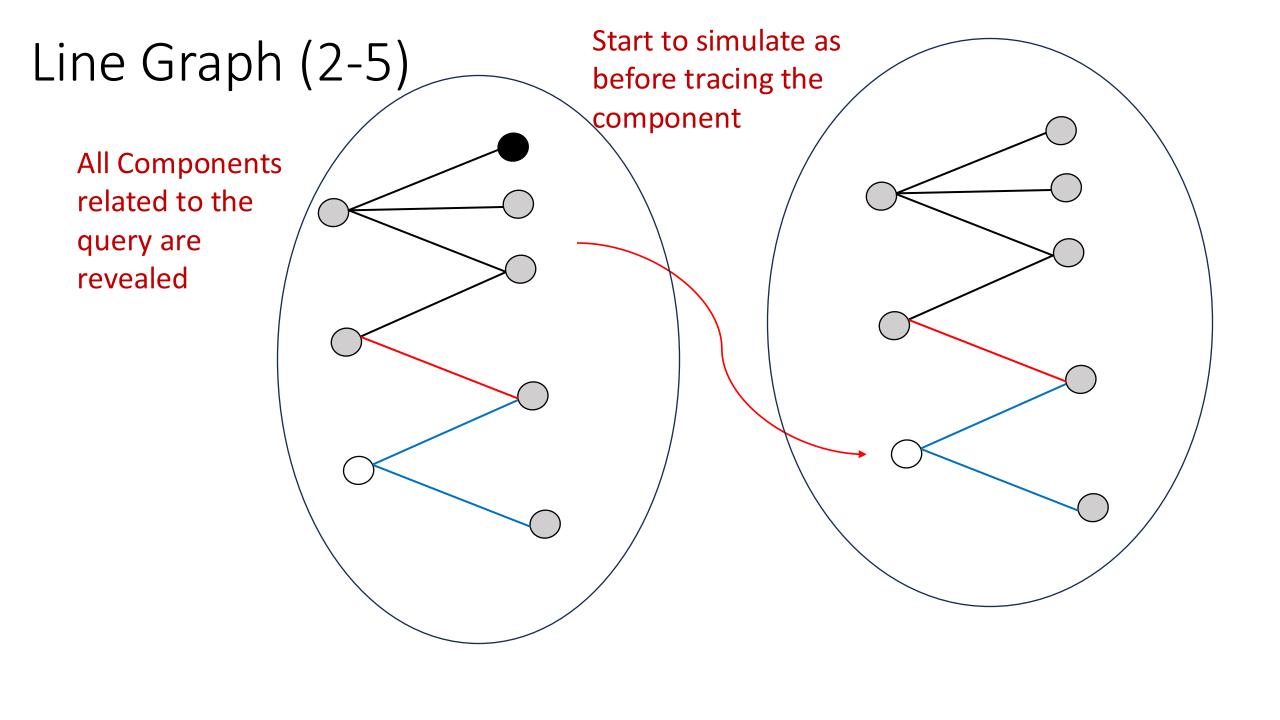
Main Steps:

• CompTrace(u): Identify 2-5 component (extended) C containing u.





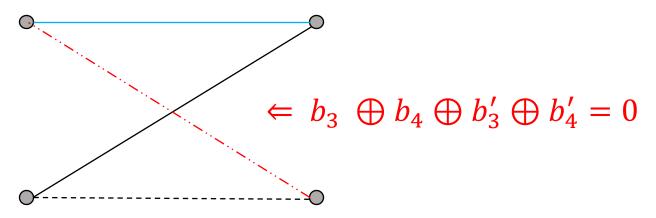
Line Graph (2-5) All Components related to the query are revealed Type-3 line induced from intersecting type-2 lines



Open Problems

- What are Other 2n bit Ideal Cipher Construction based on n bit ideal?
- Can we make 5 calls? Or 6 is minimum?
- Progress on this: Characterized all constructions and found 6 is minimum.

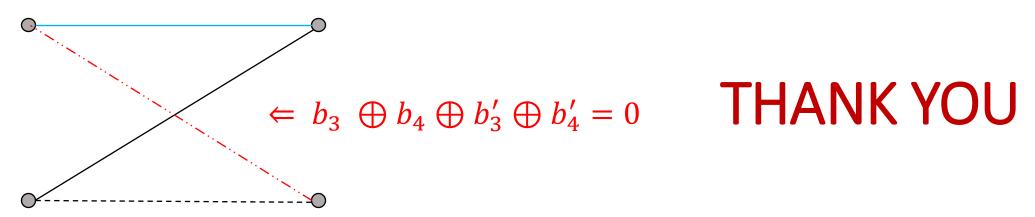
• The Current bound is $O(q^{13}/2^n)$. We can have an attack in $O(2^{n/4})$. Not Tight. Improve the Proof or Attack.



Open Problems

- What are Other 2n bit Ideal Cipher Construction based on n bit ideal?
- Can we make 5 calls? Or 6 is minimum?
- Progress on this: Characterized all constructions and found 6 is minimum.

• The Current bound is $O(q^{13}/2^n)$. We can have an attack in $O(2^{n/4})$. Not Tight. Improve the Proof or Attack.



Bad Events (Hitting).

- 1. For any fresh construction -query response (r or s) hits an existing point.
- 2. For any fresh primitive query 'u' on shore 'i', $F_i(u)$ is sampled such that there is an accidental collision in shore 'i+1'.
- 3. At time of identifying Component, simulator reveals unqueried lines due to accident (hitting due to Simulator construction queries)

Bad Events (Guessing).

Simulator completes 2-5 components (and similarly others). Many inputs are not known to Adversary. Querying such point is guessing.

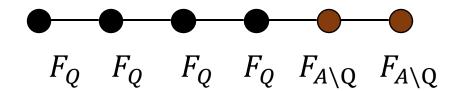
If No BAD, Simulator Friendly Line Graph is Preserved. $Pr(BAD) \leq q^{12}/2^n$

F_Q is an Well-Approximation of (P_A, F_A)

• Suppose only revealed P-lines are complete

• Point of $F_{A \setminus Q}$

 $\checkmark p \in F_{A \setminus Q}$ must be in a complete line

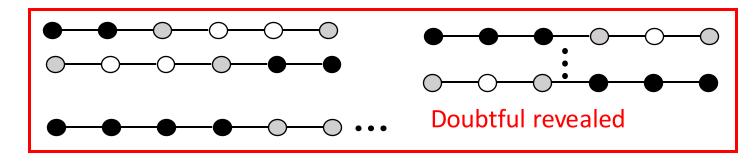


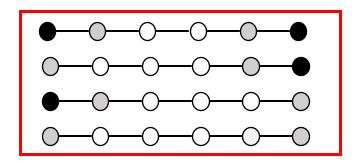
X Not Allowed (Hitting Event)

$$|Q| = O(q) \Rightarrow |A| = O(q)$$

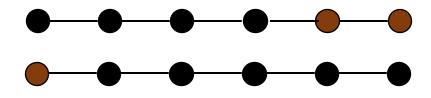
← It does not come with 5 Q points in a complete line and so input part is random

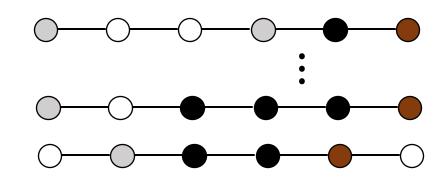
Collection of Lines





• Point of $F_{A \setminus Q}$





Examples of P-lines using $F_{A\setminus Q}$ Examples of direct lines using $F_{A\setminus Q}$

Extension of Adversary Transcript: $(P_A, F_A) \rightarrow (P_E, F_E)$

4-Saturation: Saturate all Gen4+ making Construction queries

$$(P_A, F_A) \to (P_1, F_1)$$

• Boundary Closure: Add all Construction queries using two consecutive boundary F_1 points (at least one should be from the saturation)

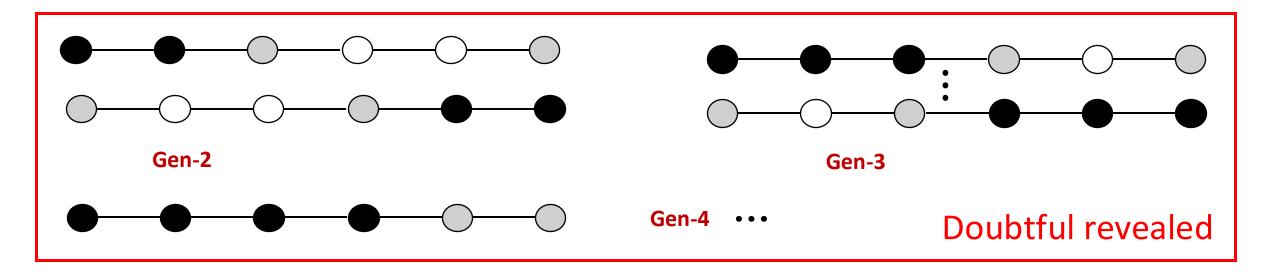
$$(P_1, F_1) \to (P_E, F_E = F_1).$$

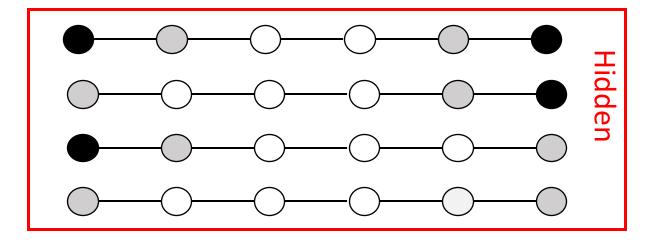
$$|F_1| = O(q^2), |P_E| = O(q^4)$$

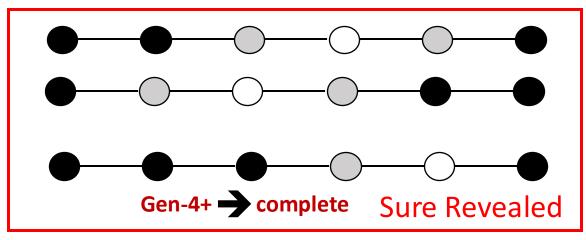
Simulator Transcript: (P_S, F_S)

- Captures F_1 completely.
- Captures $P_E \setminus P_{E,Hidden}$ completely.
- Maintains Incomplete Lines wrap-up and direct Gen-2 Lines.
 - (Gen-3+ \rightarrow Complete).
- A point in $F_{S \setminus E}$ in a complete line uniquely determined by at most three F_A points. Hence, $|F_S| = O(q^3)$
- Number of all Lines = $O(q^6)$.

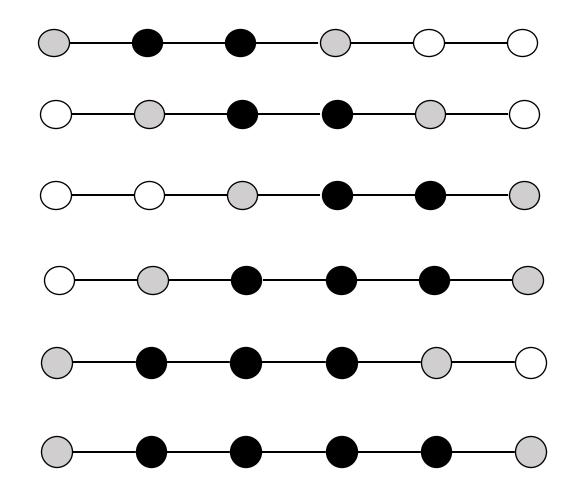
Collection of P Lines







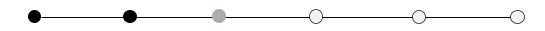
Collection of Internal Lines (Always Revealed)



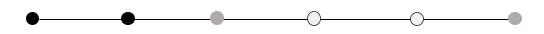
Base Line System of Transcript (P, F)

- > Every pair of consecutive F we have internal (direct) lines
- Every P element we have a P-line (wrapped up line) either complete or at most Gen-3 (or Gen-2 and doubtful (or boundary) revealed lines)
- ➤ No two lines intersects more than one points
- ➤ Intersecting pair of type-2 lines induces type-3 lines. The only intersection at white points are type-3 vs type-3/2.

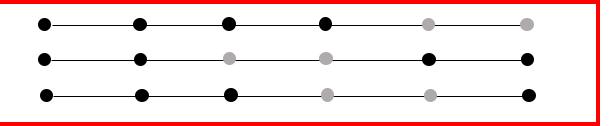
Simulation Steps



Forward Construction Query and then set as before for type-2 line

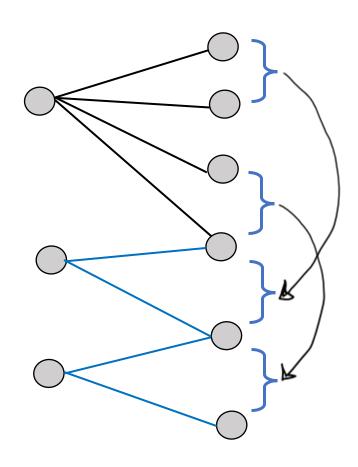


Options of Sampling

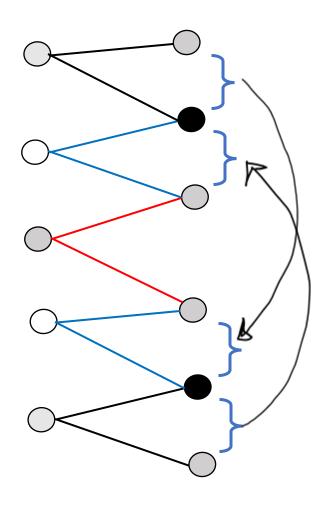


Similarly we first apply Backward Construction Query →

Examples



Example of Simulation Friendly



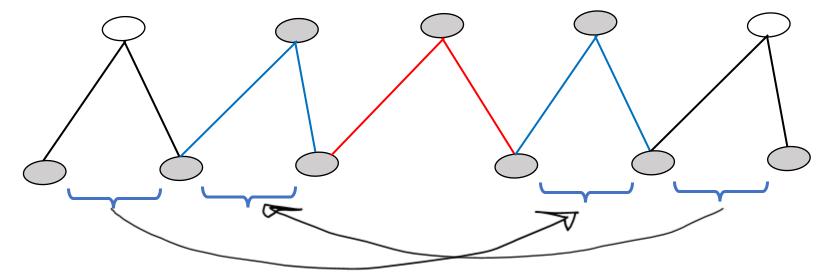
Example of Not Simulation Friendly

Simulation Friendly Line Graph

Ordering N on all lines in 2-5 line graph satisfying:

- ✓ Topological ordering: $\ell -- \ell' -- \ell'' \implies N(\ell) < \max\{N(\ell'), N(\ell'')\}$
- ✓ Conjugate dependency. If d is type-3 line of ℓ , ℓ' then $N(d) > N(\ell)$

We simulate all lines in the order of N



Example of Not Simulation Friendly

