
Vector Semi-Commitment:

Optimizing MPC-in-the-Head based Signatures

Seongkwang Kim1, Byeonghak Lee1, and Mincheol Son2

1Samsung SDS, Korea 2KAIST, Korea

Public Key Crypto in GAPS?

2

Public Key Crypto in GAPS?

• During my PhD, I have primarily focused on symmetric provable security

• Tweakable Block Ciphers, MAC, AEAD, …

3

Public Key Crypto in GAPS?

• During my PhD, I have primarily focused on symmetric provable security

• But when I attended Eurocrypt 2022, I saw following session titles:

4

Public Key Crypto in GAPS?

• During my PhD, I have primarily focused on symmetric provable security

• But when I attended Eurocrypt 2022, I saw following session titles:

5

⋮ ⋮

Public Key Crypto in GAPS?

• During my PhD, I have primarily focused on symmetric provable security

• But when I attended Eurocrypt 2022, I saw following session titles:

• I began exploring research fields closely related to secret key cryptography

6

⋮ ⋮

Public Key Crypto in GAPS?

• Good news! Some PQ Signatures are based on symmetric key assumptions

- SPHINCS+: Pure hash-based digital signature standardized by NIST (FIPS-205, SLH-DSA)

- PICNIC: MPC-in-the-Head + LowMC block cipher

- AIMer: MPC-in-the-Head + dedicated one-way function

- FAEST: VOLE-in-the-Head + AES block cipher

- …

7

Public Key Crypto in GAPS?

• Good news! Some PQ Signatures are based on symmetric key assumptions

- SPHINCS+, PICNIC, AIMer, FAEST, …

• MPC-in-the-Head (MPCitH)

- Enables post-quantum digital signatures from one-way function

- Some tools for symmetric key proofs (e.g. H-coefficient technique) are used

➔ It felt relatively familiar to me, and I imagine it will be same for you

8

Public Key Crypto in GAPS?

• Good news! Some PQ Signatures are based on symmetric key assumptions

- SPHINCS+, PICNIC, AIMer, FAEST, …

• MPC-in-the-Head (MPCitH)

- Enables post-quantum digital signatures from one-way function

• In this talk, I will briefly introduce

- MPC-in-the-Head paradigm and

- Recent optimization: Vector Semi-Commitment

9

MPC-in-the-Head

10

MPC-in-the-Head (MPCitH)

• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:

“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Turns Multiparty Computation (MPC) into

Zero-Knowledge-Proof-of-Knowledge (ZKPoK)

• Can be applied to any cryptographic problem

- E.g. Knowledge of block cipher key

11

Prover Verifier

𝑓(𝑥)

MPCitH-based Signatures

• MPCitH enables post-quantum signature schemes

- Minimal assumption: Security of digital signature only relies on the one-wayness of OWF

- 6 of 15 in NIST additional PQC standardization are based on MPCitH

- MIRA, MQOM, …

12

• Prover wants to prove the knowledge of 𝑥 s.t. 𝐹 𝑥 = 𝑦

MPC-in-the-Head Transform

13

Prover Verifier

• Prover wants to prove the knowledge of 𝑥 s.t. 𝐹 𝑥 = 𝑦

MPC-in-the-Head Transform

14

Prover Verifier

(1) Generate and commit shares

𝑥 = 𝑥 1 +⋯+ 𝑥(𝑁) Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

• Prover wants to prove the knowledge of 𝑥 s.t. 𝐹 𝑥 = 𝑦

MPC-in-the-Head Transform

15

Prover Verifier

(1) Generate and commit shares

𝑥 = 𝑥 1 +⋯+ 𝑥(𝑁)

(2) Run MPC in their Head

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

𝑓(𝑥)

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

• Prover wants to prove the knowledge of 𝑥 s.t. 𝐹 𝑥 = 𝑦

MPC-in-the-Head Transform

16

Prover Verifier

(1) Generate and commit shares

𝑥 = 𝑥 1 +⋯+ 𝑥(𝑁)

(2) Run MPC in their Head

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

𝑓(𝑥)
𝑖∗

(3) Choose a party
𝑖∗ ←$ 1,… ,𝑁

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

• Prover wants to prove the knowledge of 𝑥 s.t. 𝐹 𝑥 = 𝑦

MPC-in-the-Head Transform

17

Prover Verifier

(1) Generate and commit shares

𝑥 = 𝑥 1 +⋯+ 𝑥(𝑁)

(2) Run MPC in their Head

(4) Open parties 1,… ,𝑁 ∖ {𝑖∗}

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

𝑓(𝑥)
𝑖∗

(3) Choose a party
𝑖∗ ←$ 1,… ,𝑁

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

𝑥 𝑖
𝑖≠𝑖∗

• Prover wants to prove the knowledge of 𝑥 s.t. 𝐹 𝑥 = 𝑦

MPC-in-the-Head Transform

18

Prover Verifier

(1) Generate and commit shares

𝑥 = 𝑥 1 +⋯+ 𝑥(𝑁)

(2) Run MPC in their Head

(4) Open parties 1,… ,𝑁 ∖ {𝑖∗}

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

𝑓(𝑥)
𝑖∗

(3) Choose a party
𝑖∗ ←$ 1,… ,𝑁

(5) Check ∀𝑖 ≠ 𝑖∗

- Commits Com 𝑥 𝑖

- Broadcast values

𝛼 𝑖 = 𝜙 𝑥 𝑖

Check MPC result

𝐹 𝛼 = 𝑦

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

𝑥 𝑖
𝑖≠𝑖∗

19

Prover Verifier

(1) Generate and commit shares

𝑥 = 𝑥 1 +⋯+ 𝑥(𝑁)

(2) Run MPC in their Head

(4) Open parties 1,… ,𝑁 ∖ {𝑖∗}

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

𝑓(𝑥)
𝑖∗

(3) Choose a party
𝑖∗ ←$ 1,… ,𝑁

(5) Check ∀𝑖 ≠ 𝑖∗

- Commits Com 𝑥 𝑖

- MPC computations

𝛼 𝑖 = 𝜙 𝑥 𝑖

Check MPC result

𝐹 𝛼 = 𝑦

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

𝑥 𝑖
𝑖≠𝑖∗

• Zero-knowledge for verifier

- 𝑥 is still secret because 𝑥 𝑖∗ is unknown to verifier

- unopened party’s secret cannot be revealed: 𝑥 𝑖∗ from Com(𝑥 𝑖∗)

- Com(𝑥 𝑖∗) should be indistinguishable to random (hiding property of Commitment)

20

Prover Verifier

(1) Generate and commit shares

𝑥 = 𝑥 1 +⋯+ 𝑥(𝑁)

(2) Run MPC in their Head

(4) Open parties 1,… ,𝑁 ∖ {𝑖∗}

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

𝑓(𝑥)
𝑖∗

(3) Choose a party
𝑖∗ ←$ 1,… ,𝑁

(5) Check ∀𝑖 ≠ 𝑖∗

- Commits Com 𝑥 𝑖

- MPC computations

𝛼 𝑖 = 𝜙 𝑥 𝑖

Check MPC result

𝐹 𝛼 = 𝑦

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

𝑥 𝑖
𝑖≠𝑖∗

• Malicious Prover cheats successfully if:

- unopened party was corrupted: Com 𝑥 𝑖∗ and 𝛼 𝑖∗ are maliciously chosen without 𝑥 𝑖∗

➔ probability: 1/N

- Corruption of 𝑖 ≠ 𝑖∗ did not detected: Commitment check or MPC computation check failed

21

Prover Verifier

(1) Generate and commit shares

𝑥 = 𝑥 1 +⋯+ 𝑥(𝑁)

(2) Run MPC in their Head

(4) Open parties 1,… ,𝑁 ∖ {𝑖∗}

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

𝑓(𝑥)
𝑖∗

(3) Choose a party
𝑖∗ ←$ 1,… ,𝑁

(5) Check ∀𝑖 ≠ 𝑖∗

- Commits Com 𝑥 𝑖

- MPC computations

𝛼 𝑖 = 𝜙 𝑥 𝑖

Check MPC result

𝐹 𝛼 = 𝑦

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

𝑥 𝑖
𝑖≠𝑖∗

• Malicious Prover cheats successfully if:

- unopened party was corrupted ➔ probability: 1/N

- Corruption of 𝑖 ≠ 𝑖∗ did not detected ➔ probability: 𝜖 (typically, small)

Repeat 𝜏 times where
1

𝑁
+ 𝜖

𝜏

≃ 2−𝜆

22

Prover Verifier

(1) Generate and commit shares

𝑥 = 𝑥 1 +⋯+ 𝑥(𝑁)

(2) Run MPC in their Head

(4) Open parties 1,… ,𝑁 ∖ {𝑖∗}

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

𝑓(𝑥)
𝑖∗

(3) Choose a party
𝑖∗ ←$ 1,… ,𝑁

(5) Check ∀𝑖 ≠ 𝑖∗

- Commits Com 𝑥 𝑖

- MPC computations

𝛼 𝑖 = 𝜙 𝑥 𝑖

Check MPC result

𝐹 𝛼 = 𝑦

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

𝑥 𝑖
𝑖≠𝑖∗

• Malicious Prover cheats successfully if:

- unopened party was corrupted ➔ probability: 1/N

- Corruption of 𝑖 ≠ 𝑖∗ did not detected ➔ probability: 𝜖 (typically, small)

Repeat 𝜏 times where
1

𝑁
+ 𝜖

𝜏

≃ 2−𝜆

Commits are binding & No parties are corrupted
⇒ the input to MPC protocol is binded
⇒ can cheats only if MPC check fails for the binded input

23

Prover Verifier

(1) Generate and commit shares

𝑥 = 𝑥 1 +⋯+ 𝑥(𝑁)

(2) Run MPC in their Head

(4) Open parties 1,… ,𝑁 ∖ {𝑖∗}

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

𝑓(𝑥)
𝑖∗

(3) Choose a party
𝑖∗ ←$ 1,… ,𝑁

(5) Check ∀𝑖 ≠ 𝑖∗

- Commits Com 𝑥 𝑖

- MPC computations

𝛼 𝑖 = 𝜙 𝑥 𝑖

Check MPC result

𝐹 𝛼 = 𝑦

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

𝑥 𝑖
𝑖≠𝑖∗

• Malicious Prover cheats successfully if:

- unopened party was corrupted ➔ probability: 1/N

- Corruption of 𝑖 ≠ 𝑖∗ did not detected ➔ probability: 𝜖 (typically, small)

Repeat 𝜏 times where
1

𝑁
+ 𝜖

𝜏

≃ 2−𝜆

Commits are semi-binding & No parties are corrupted
⇒ some(=u) inputs to MPC protocol are binded
⇒ can cheats only if MPC check fails for binded(=u) inputs

⇒ 𝜖 become 𝑢𝜖

Vector (Semi-)Commitment

24

Vector Commitments (VC)

25

• VC. Commit seed = decom, com

- com ≔ com(1), … , com(8)

• VC. Open decom, ത3 = pdecom

- pdecom ≔ node1,2, node2,1, seed
(4), com(3)

- All information to evaluate seed(𝑖) for 𝑖 ≠ ത3

• VC. Verify com, pdecom, ത3 = seed 𝑖
𝑖≠3

or ⊥

PRG seed(𝑖) = internal values for i-th party (including 𝑥(𝑖)

PRG

Hash

Vector Commitments (VC)

26

• VC is binding: com 𝑖
𝑖∈[𝑁]

binds seed 𝑖
𝑖∈[𝑁]

➔ One cannot find collisions of Hash

➔ requires com 𝑖 ≥ 2𝜆

• VC is hiding: hidden seed cannot be discovered

from pdecom

➔ One cannot find preimage of Hash

➔ requires com 𝑖 ≥ 𝜆

PRG

Hash

Proof of binding: Collision resistance of Hash / Simple analysis with RO

Vector Commitments (VC)

27

• VC is binding: com 𝑖
𝑖∈[𝑁]

binds seed 𝑖
𝑖∈[𝑁]

➔ One cannot find collisions of Hash

➔ requires com 𝑖 ≥ 2𝜆

• VC is hiding: hidden seed cannot be discovered

from pdecom

➔ One cannot find preimage of Hash

➔ requires com 𝑖 ≥ 𝜆

PRG

Hash

Proof of hiding: the adversary cannot distinguish seed 3 from random 𝜆-bit string
➔ PRG assumption + preimage resistance / H-coefficient technique

Vector Commitments (VC)

28

• VC is binding: com 𝑖
𝑖∈[𝑁]

binds seed 𝑖
𝑖∈[𝑁]

➔ One cannot find collisions of Hash

➔ requires com 𝑖 ≥ 2𝜆

• VC is hiding: hidden seed cannot be discovered

from pdecom

➔ One cannot find preimage of Hash

➔ requires com 𝑖 ≥ 𝜆

PRG

Hash

Relaxing the binding property of VC will reduce communication cost (=signature size)

Vector Semi-Commitments (VSC)

29

• VC is u-semi-binding

- com 𝑖
𝑖∈[𝑁]

binds few (=u) of seed 𝑖
𝑖∈[𝑁]

- One cannot find large multi-collisions of Hash

• Balls-into-Bins Game

- If Q balls are randomly assigned into 2𝜆 bins

Pr max−load ≥
2𝜆

log 𝜆
≤ O

𝑄

2𝜆

- Set com 𝑖 = 𝜆 then 𝑢 = ??

PRG

Hash

Vector Semi-Commitments (VSC)

30

• Naive computation: u =
2𝜆

log 𝜆

𝑁
which seems quite large

- But malicious prover should find seed 𝑖
𝑖∈[𝑁]

with valid pdecom

2𝜆/ log 𝜆 2𝜆/ log 𝜆⋯

Vector Semi-Commitments (VSC)

31

• # of seed 𝑖
𝑖∈[𝑁]

with valid pdecom: 𝑢 =
𝑁

2
⋅

2𝜆
log 𝜆

2
➔ VSC is 𝑢-semi-binding

1 2𝜆/ log 𝜆 2𝜆/ log 𝜆 1

Vector Semi-Commitments (VSC)

32

• Halved commit size by relaxing binding property

- Reduce 𝜏 ⋅ 𝜆 bits of signature size

• Two instantiations: RO-VSC and IC-VSC

- For IC-VSC, we use fixed key AES for tree expansion

➔ a lot faster VSC evaluation

- We provide security proof in ROM/ICM

Differences in Security Proofs

33

• The happy illusion in the beginning

- VSC has u-semi-binding instead of binding(=1-semi-binding)

- MPC check failure probability becomes u-times larger

Prover Verifier

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

𝑥 𝑖
𝑖≠𝑖∗

Choose N−1 parties to be opened

Differences in Security Proofs

34

• The happy illusion in the beginning

- VSC has u-semi-binding instead of binding(=1-semi-binding)

- MPC check failure probability becomes u-times larger

But the world was not so simple

Prover Verifier

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

𝑥 𝑖
𝑖≠𝑖∗

Choose N−1 parties to be opened

Differences in Security Proofs

35

• The reality is quite complicated

• MPC check failure probability becomes u-times larger and

Prover Verifier

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

Choose N−1 parties to be opened

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

𝑥 𝑖
𝑖≠𝑖∗

Differences in Security Proofs

36

• The reality is quite complicated

• MPC check failure probability becomes u-times larger and

• Malicious prover can find new seeds those are consistent to previously generated commitments

- Even after opening parties are known

Prover Verifier

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

𝑥 𝑖
𝑖≠𝑖∗

Choose N-1 parties to be opened

Differences in Security Proofs

37

So, we should prove followings

1. u-semi-binding property of VSC

2. Malicious prover cannot find a new seed which is

- Consistent to previously generated commitments and

- Pass the MPC check

➔ Analyzing more bad events, …

Prover Verifier

Send Commits

Com 𝑥 1 , … , Com 𝑥 𝑁

Send Broadcasts

𝛼(1), … , 𝛼(𝑛)

𝑥 𝑖
𝑖≠𝑖∗

Choose N-1 parties to be opened

Result

38

• reduced BN++: BN++ with IC-VSC

- Shorter commitment size ➔ Shorter signature size

- Use fixed key AES ➔ Faster evaluation

Conclusion

39

• Vector semi-commitment (VSC)

- relaxing binding property of vector commitment

- VSC makes signatures shorter and faster

• Future Works

- VOLE-in-the-Head with VSC? ➔ In progress

- VSC based on standard (PRG) assumption ➔ Useful for Quantum proofs

Thank you
Q&A : byghak.lee@samsung.com

