Vector Semi-Commitment:
Optimizing MPC-in-the-Head based Signatures

Seongkwang Kim!, Byeonghak Lee!, and Mincheol Son?
1Samsung SDS, Korea 2KAIST, Korea

Public Key Crypto iIn GAPS?

Public Key Crypto iIn GAPS?

* During my PhD, | have primarily focused on symmetric provable security
* Tweakable Block Ciphers, MAC, AEAD, ...

Public Key Crypto iIn GAPS?

* During my PhD, | have primarily focused on symmetric provable security

* But when | attended Eurocrypt 2022, | saw following session titles:

Public Key Crypto iIn GAPS?

* During my PhD, | have primarily focused on symmetric provable security

* But when | attended Eurocrypt 2022, | saw following session titles:

Secure multiparty computation 1 Post-quantum cryptography 1

Secure multiparty computation 5 Post-quantum cryptography 4

Public Key Crypto in GAPS?

* During my PhD, | have primarily focused on symmetric provable security

* But when | attended Eurocrypt 2022, | saw following session titles:

Secure multiparty computation 1 Post-quantum cryptography 1

Secure multiparty computation 5 Post-quantum cryptography 4

* | began exploring research fields closely related to secret key cryptography

Public Key Crypto in GAPS?

* Good news! Some PQ Signatures are based on symmetric key assumptions
= SPHINCS+: Pure hash-based digital signature standardized by NIST (FIPS-205, SLH-DSA)
= PICNIC: MPC-in-the-Head + LowMC block cipher

= AlMer: MPC-in-the-Head + dedicated one-way function
= FAEST: VOLE-in-the-Head + AES block cipher

Public Key Crypto in GAPS?

* Good news! Some PQ Signatures are based on symmetric key assumptions
= SPHINCS+, PICNIC, AlMer, FAEST, ...

* MPC-in-the-Head (MPCitH)
- Enables post-quantum digital signatures from one-way function
- Some tools for symmetric key proofs (e.g. H-coefficient technique) are used

=> It felt relatively familiar to me, and | imagine it will be same for you

Public Key Crypto in GAPS?

* Good news! Some PQ Signatures are based on symmetric key assumptions
= SPHINCS+, PICNIC, AlMer, FAEST, ...

* MPC-in-the-Head (MPCitH)

- Enables post-quantum digital signatures from one-way function

* In this talk, | will briefly introduce
= MPC-in-the-Head paradigm and

= Recent optimization: Vector Semi-Commitment

MPC-In-the-Head

MPC-in-the-Head (MPCIitH)

* [IKOSO7] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
“Zero-knowledge from secure multiparty computation” (STOC 2007)

* Turns Multiparty Computation (MPC) into
Zero-Knowledge-Proof-of-Knowledge (ZKPoK)

 Can be applied to any cryptographic problem &>

- E.g. Knowledge of block cipher key b B4 B4 R !
[]

Prover > Verifier

11

MPCIitH-based Signatures

* MPCitH enables post-quantum signature schemes
= Minimal assumption: Security of digital signature only relies on the one-wayness of OWF
- 6 of 15 in NIST additional PQC standardization are based on MPCitH
- MIRA, MQOM, ...

MPC in-the-head FS transform OWF

Interactive Digital
ZK Signature

MPC-in-the-Head Transform

* Prover wants to prove the knowledge of x s.t. F(x) = y

Prover Verifier

MPC-in-the-Head Transform

* Prover wants to prove the knowledge of x s.t. F(x) = y

(1) Generate and commit shares
x=x@ 4o 4 x () Send Commits
Com(x(l)), . Com(x(N))

Prover > Verifier

MPC-in-the-Head Transform

* Prover wants to prove the knowledge of x s.t. F(x) = y

(1) Generate and commit shares
x=x@ 4o 4 x () Send Commits
Com(x(l)), ...,Com(x(N))

(2) Run MPC in their Head Prover > \erifier

Send Broadcasts
a@® . a®

&>

MPC-in-the-Head Transform

* Prover wants to prove the knowledge of x s.t. F(x) = y

(1) Generate and commit shares
x=x@ 4o 4 x () Send Commits
Com(x(l)), ...,Com(x(N))

(2) Run MPC in their Head Prover > \erifier

Send Broadcasts
a@® . a®™

(3) Choose a party
i <3 {1, ...,N}

&

MPC-in-the-Head Transform

* Prover wants to prove the knowledge of x s.t. F(x) = y

(1) Generate and commit shares

X = x(l) 4+ o4 x@M Send Commits
Com(x(l)), ...,Com(x(N))
(2) Run MPC in their Head Prover > \erifier

Send Broadcasts

a® . o
(3) Choose a party
i* i* (_$ {1,...,N}

0}
lF1

(4) Open parties {1, ..., N} \ {i*}

MPC-in-the-Head Transform

* Prover wants to prove the knowledge of x s.t. F(x) = y

(1) Generate and commit shares
x=x@ 4o 4 x () Send Commits

Com(x(l)), ...,Com(x(N))
R . (3) Choose a party
Prover Verifier i* ¢ {1,...,N}

(2) Run MPC in their Head

Send Broadcasts
a®, ... a (5) Check Vi # i*
- Commits Com(x(i))
- Broadcast values
a® = qb(x(i))
_ Check MPC result
{x(‘)}. . —
i#i* ‘ F(a) = y

&

(4) Open parties {1, ..., N} \ {i*}

(1) Generate and commit shares
x = xM 4o x @ Send Commits

Com(x(l)), ...,Com(x(N))
R o (3) Choose a party
Prover Verifier i* ¢ {1,..,N}

(2) Run MPC in their Head

Send Broadcasts
a® .. a® (5) Check Vi #i*
- Commits Com(x(i))
- MPC computations
a® = qb(x(i))
. Check MPC result
{x@} -
i#i* F(a) =y

&

(4) Open parties {1, ..., N} \ {i*}

» Zero-knowledge for verifier
- x is still secret because x7 is unknown to verifier

- unopened party’s secret cannot be revealed: x from Com(x ™)

- Com(x(i*)) should be indistinguishable to random (hiding property of Commitment)

(1) Generate and commit shares
x = xM 4o x @ Send Commits
Com(x(l)), ...,Com(x(N))

. . ‘ o (3) Choose a party
(2) Run MPC in their Head Prover > \erifier

i <3 {1, ...,N}

Send Broadcasts
a® .. a® (5) Check Vi #i*
- Commits Com(x(i))
- MPC computations
a® = qb(x(i))
. Check MPC result
{x@} -
i#i* F(a) =y

&

(4) Open parties {1, ..., N} \ {i*}

* Malicious Prover cheats successfully if:

= unopened party was corrupted: Com(x(i*)) and @) are maliciously chosen without x ()

=>» probability: 1/N

= Corruption of i # i* did not detected: Commitment check or MPC computation check failed

(1) Generate and commit shares
x = xM 4o x @ Send Commits
Com(x(l)), ...,Com(x(N))

. . ‘ o (3) Choose a party
(2) Run MPC in their Head Prover > \erifier

i <3 {1, ...,N}

Send Broadcasts
a® .. a® (5) Check Vi #i*
- Commits Com(x(i))
- MPC computations
a® = qb(x(i))
. Check MPC result
{x@} -
i#i* F(a) =y

&>

(4) Open parties {1, ..., N} \ {i*}

* Malicious Prover cheats successfully if: _
Repeat T times where
= unopened party was corrupted = probability: 1/N <1 >r
~ Z_A

N+E

= Corruption of i # i* did not detected = probability: € (typically, small)

(1) Generate and commit shares
x=xD 4o 4 x (N Send Commits
Com(x(l)), ..., Com(x®™

) Choose a party

(2) Run MPC in their Head N
S {1, ...,N}

Commits are binding & No parties are corrupted
= the input to MPC protocol is binded

= can cheats only if MPC check fails for the binded m (=)
vIPC result
Fla) =y

(4) Open parties {1, ...,

* Malicious Prover cheats successfully if:

Repeat T times where
= unopened party was corrupted = probability: 1/N (1 T
—+ E) ~ 274

N

= Corruption of i # i* did not detected = probability: € (typically, small)

(1) Generate and commit shares
x=xD 4o 4 x (N Send Commits
Com(x(l)), ..., Com(x®™

) Choose a party

(2) Run MPC in their Head N
S {1, ...,N}

Commits are semi-binding & No parties are corrupted
= some(=u) inputs to MPC protocol are binded

can cheats only if MPC check fails for binded(=u) inpuﬁ
= € become ue

VIPC result

Fla) =y
(4) Open parties {1, ...,

* Malicious Prover cheats successfully if:

Repeat T times where
= unopened party was corrupted = probability: 1/N (1 T
—+ E) ~ 274

N

= Corruption of i # i* did not detected = probability: € (typically, small)

Vector (Semi-)Commitment

Vector Commitments (VC)

¢ VC.Commit(seed) = (decom, com)
PRG seed

s e - com = (com(l), ..,com®)
node; ; node; o
« S 4 S * VC.Open(decom, 3) = pdecom
nodes , node; o node; 3 nodes 4
'/ \ f x f \ '/ \ - pdecom := (nodel,z,nodezll,seed(4),com(?’))
seed®) seed® seed™ seed® seed® seed® seed™ seed® = All information to evaluate seed® fori # 3

(Hash J 440 b bbb

com® com® com® com® com® com® com® com® ¢ VC.Verify(com, pdecom, 3) = (Seed(l))i;t3 or L

PRG(seed(i)) = internal values for i-th party (including x®

Vector Commitments (VC)

* VCis binding: (Com(i))iE[N] binds (Seed(i))ie[N]

PRG seed
p—— e =» One cannot find collisions of Hash
node; ; node, o . (D)
, >
p " - - = requires |com¥| > 22
nodes , node; o node; 3 node; 4

* VCis hiding: hidden seed cannot be discovered
Yy 4y 4% 4) &

seed!) seed® seed'” seed” seed® seed® seed” seed® from pdecom

' } I } } ! | | =» One cannot find preimage of Hash

com® com® com™® com® com® com® com(™ com(®) =>» requires |C0m(i)| = A

Proof of binding: Collision resistance of Hash / Simple analysis with RO

Vector Commitments (VC)

* VCis binding: (Com(i))iE[N] binds (Seed(i))ie[N]

PRG seed
p—— e =» One cannot find collisions of Hash
node; ; node; - : (l)
, >
p " - - = requires |com¥| > 22
node, ; node; o node; 3 nodes 4

* VCis hiding: hidden seed cannot be discovered
Yy 4y 4% 4) &

seed”) seed® seed” seed” seed® seed® seed” seed® from pdecom

| A | N N A => One cannot find preimage of Hash

com® com®@ com® com™® com® com® com(” com®) =» requires |C0m(i)| > A

Proof of hiding: the adversary cannot distinguish seed®) from random A-bit string
=» PRG assumption + preimage resistance / H-coefficient technique

Vector Commitments (VC)

* VCis binding: (Com(i))iE[N] binds (Seed(i))ie[N]

PRG seed
p—— e =» One cannot find collisions of Hash
node, ; node, o -)
, >
p " - - = requires |com¥| > 22
nodes , node; o node; 3 node; 4

* VCis hiding: hidden seed cannot be discovered
Yy 4y 4% 4) &

seed!) seed® seed'” seed” seed® seed® seed” seed® from pdecom

| A [A => One cannot find preimage of Hash

com® com®@ com® com™® com® com® com(” com®) =» requires |C0m(i)| > A

Relaxing the binding property of VC will reduce communication cost (=signature size)

Vector Semi-Commitments (VSC)

* VCis u-semi-binding

PRG seed
P il = (com®)._binds few (=u) of (seed®).
i€[N] E[N]
node; ; node; o
» a i W = One cannot find large multi-collisions of Hash
nodes , node; o node; 3 nodes 4
/0 /o /o / '\ ° Balls-into-Bins Game
seed”) seed® seed”) seed'”) seed” seed' seed” seed®™ - |f Q balls are randomly assigned into 2% bins

(Hash J 440 b bbb Pr[ZAO(Q>

com® com® com™® com® com® com® com(” com® max—load > ——| < A

logA| —

- Set |com(i)| = Athenu =7??

Vector Semi-Commitments (VSC)

seed
node; ; node; -
node, ; nodes - node; 3 node; 4

T T

seedV) seed® seed'® seed'® seed® seed® seed” seed®

T

com™® com® com® com® com® com® com(” com®

2A/log A coe 2A/log A

N
* Naive computation: u = () which seems quite large

log A

- But malicious prover should find (seed(i))iE[N with valid pdecom

]

Vector Semi-Commitments (VSC)

seed

4/\

node; ; / node; 5 \

» N » N\
/" node,; \ nodey, node, 3 node, 4

R R T T

N Y R\ :
seedV) seed?|seed'?|seed | seed® seed® seed” seed®

N I

com(® com('z) com® [com®N\com®) com® com(” com(®)

~

1 2A/logA 21/logA 1
. 2
* #of (seed(‘))iE[N] with valid pdecom: u = g : (%) =>» VSC is u-semi-binding

Vector Semi-Commitments (VSC)

* Halved commit size by relaxing binding property

- Reduce 7T - A bits of signature size

 Two instantiations: RO-VSC and IC-VSC

= For IC-VSC, we use fixed key AES for tree expansion
=>» a lot faster VSC evaluation

- We provide security proof in ROM/ICM

seed
node; ; node; -
node, ; node; » node; 3 node, 4

T T

seed!) seed® seed® seed'” seed® seed® seed” seed®

A

com® com®@ com™ com™® com® com® com(” com®)

node. ; node. ;
/
salt salt; -~
* Y
Y
Htree Sa|t2 +> E a
Y
D
T
. + D
r v
Y Y Y
nOdee+l,2i—1 nodee+1,2i nodee—l—l,?i—l nOdee—i—l,Qi

(a) RO-VSC (b) IC-VSC

Differences In Security Proofs

* The happy illusion in the beginning
= VSC has u-semi-binding instead of binding(=1-semi-binding)

= MPC check failure probability becomes u-times larger

Send Commits
Com(x®), ..., Com(x™)

Prover Verifier

Send Broadcasts
a@® . a®

Choose N-1 parties to be opened

o

Differences In Security Proofs

* The happy illusion in the beginning
= VSC has u-semi-binding instead of binding(=1-semi-binding)
= MPC check failure probability becomes u-times larger

But the world was not so simple

Send Commits
Com(x®), ..., Com(x™)

Prover Verifier

Send Broadcasts
a@® . a®

Choose N-1 parties to be opened

o

Differences In Security Proofs

* The reality is quite complicated

* MPC check failure probability becomes u-times larger and

Send Commits
Com(x(l)), . Com(x(N))

Prover Verifier

Send Broadcasts
a@® . a®

Choose N-1 parties to be opened

o

Differences In Security Proofs

* The reality is quite complicated
* MPC check failure probability becomes u-times larger and

* Malicious prover can find new seeds those are consistent to previously generated commitments

- Even after opening parties are known

Send Commits
Com(x(l)), . Com(x(N))

Prover Verifier

Send Broadcasts
a@® . a®

[Choose N-1 parties to be opened]

o

Differences In Security Proofs

So, we should prove followings
1. u-semi-binding property of VSC

2. Malicious prover cannot find a new seed which is

= Consistent to previously generated commitments and

- Pass the MPC check Send Commits
1 ™) »
Prover Com(xV), .., Com(x™) Verifier
=>» Analyzing more bad events, ... Send Broadcasts

a®, ..., a™

[Choose N-1 parties to be opened]

Easd e

Field RO PRG or IC Sig. size
Size call call (B)

2125 16 33| 532 1056C + 1518 1056C' + 3792
256 17 | 4356 8704C + 13022 544C + 3088

2128 16 33 3 1056C" + 1551 1056C" + 2736
2128 256 17| 5 8704C + 13039 544C + 2544

* reduced BN++: BN++ with IC-VSC

= Shorter commitment size = Shorter signature size

= Use fixed key AES =» Faster evaluation

R

Conclusion

* Vector semi-commitment (VSC)
= relaxing binding property of vector commitment

= VSC makes signatures shorter and faster

e Future Works
= VOLE-in-the-Head with VSC? = In progress

= VSC based on standard (PRG) assumption =2 Useful for Quantum proofs

Thank you

Q&A : byghak.lee@samsung.com

