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Quantum computing

Quantum state (n qubits):
° |1/)> = er{o’l}" Qx |X>
@ a, are complex numbers (amplitudes)

@ Measurement outputs x with prob. |a,|?

@ We transform the state using unitary operations, then measure
o Partial measurements will reduce the superposition
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Measurement outputs x with prob. |a,|?
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We transform the state using unitary operations, then measure
o Partial measurements will reduce the superposition

(Typical) operations:

@ Classical reversible operations “in superposition”: transform each
bit-string |x) — | A(x))

@ Fourier transforms over the amplitudes, for example the Hadamard
transform:

D f(x)1x) — <Z(—1)X'yf(y)> x) where f : {0,1}" — C

y

V
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The two quantum adversaries

Consider a cipher Ex.
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“Standard” access (Q1) “Superposition” access (Q2)
x Ei(x) [x) [0) %) [Eic(x))

@ Adversary is quantum @ Adversary is quantum

@ Black-box is classical @ Black-box is quantum
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The two quantum adversaries

Consider a cipher Ex.

“Standard” access (Q1) “Superposition” access (Q2)
x Ei(x) [x) [0) %) [Eic(x))

@ Adversary is quantum @ Adversary is quantum

@ Black-box is classical @ Black-box is quantum

e Q1 / Q2 only concerns keyed black-boxes

o Primitive queries (random oracle, ideal cipher) are always
quantum

Quantum Attacks on Symmetric Constructions 3/27



Introduction Simon’s Algorithm (and Attacks) Quantum Linearization Attack
00e00 00000000000 00000

Example: Grover's search

Time T — /T for exhaustive search if:
@ sampling the search space
@ testing the sampled value

are quantum algorithms.

Maybe...
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Example: Grover's search

Time T — /T for exhaustive search if:
@ sampling the search space
@ testing the sampled value

are quantum algorithms.

Consider an authenticated cipher Ex : x = y,t .

Key search

@ Find K that matches known plaintext-ciphertexts

@ In quantum time 21K172 Q1

Forgery

@ Find y, t such that t passes verification

e In quantum time 2/t1/2 Q2
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Q1 security and primitive queries

If all oracles have classical access, then classical information-theoretic
proofs trivially lift to the Q1 setting.

Maybe...
00000

— We must at least allow quantum primitive access.

B Aaronson, Ambainis, “The need for structure in quantum speedups.” Theory
Comput. 2014

D Yamakawa, Zhandry, “Verifiable Quantum Advantage without Structure.” FOCS

2022
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Q1 security and primitive queries

If all oracles have classical access, then classical information-theoretic
proofs trivially lift to the Q1 setting.

— We must at least allow quantum primitive access.

With a random oracle

@ The Aaronson-Ambainis conjecture: for any distinguishing problem
relative to a RO, quantum queries give at most a polynomial
speedup [AA14]

@ The Yamakawa-Zhandry result: exponential gap is achievable for a
search problem [YZ22]

@ Aaronson, Ambainis, “The need for structure in quantum speedups.” Theory
Comput. 2014

D Yamakawa, Zhandry, “Verifiable Quantum Advantage without Structure.” FOCS
2022
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Summary: Q1 and Q2 security

@ Many cipher / MAC / AE constructions are broken in Q2

@ Even these “broken” constructions can be secure in Q1

@ But Q1 security is not automatic as long as non-classical oracles are
involved

@ Best quantum / classical gap known in the Q1 setting on real-life

constructions is T — T2/> (not Grover search!)
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Simon’s algorithm

Simon’s problem

Let £ : {0,1}" — {0,1}" be a 2-to-1 function such that
3s,Vx, f(x & s) = f(x). Find s.

Maybe...
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D Simon, “On the power of quantum computation”, FOCS 1994
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Simon’s algorithm

Simon’s problem

Let £ : {0,1}" — {0,1}" be a 2-to-1 function such that
3s,Vx, f(x @ s) = f(x). Find s.

Simon’s problem in cryptography

Same, but f is a random periodic function.

B Simon, “On the power of quantum computation”, FOCS 1994
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Simon'’s algorithm (subroutine)

Start from |0)

Hadamard transform: > |x)

Compute f: > |x)|f(x))

Measure f(x): lef(x):a IX) = |[x) + |x @ s)
Hadamard transform: -/ (=1 + (71)(X®S)~y) ly)

0O 00O0CO0

If y-s=1, then:
(1) + (~)P = (~1)*7 (14 (1)) = 0

— one can only measure y such that y - s = 0.

= (O (n) queries to succeed
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Simon’s algorithm for the cryptanalyst

1. Using our oracles (construction, primitives), define a periodic
function

2. Run Simon's algorithm
3. Use the information recovered to break some property

@ Access to a black-box cipher: find the secret key (break PRP
security)

@ Access to a black-box AE / MAC: find an internal state value

which allows to produce some forgeries

Maybe...
00000
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Example: Even-Mansour cipher

k1 ko

Ekl,kz(X) =k, ® P(X@ kl)
X P Ek|7k2(X)

B Kuwakado, Morii, “Security on the quantum-type even-mansour cipher”, ISITA
2012

D Alagic, Bai, Katz, Majenz, “Post-Quantum Security of the Even-Mansour Cipher”,
EUROCRYPT 2022
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Example: Even-Mansour cipher

k1 ko

Ekl,kz(X) =k, ® P(X@ kl)
X P Ek|7k2(X)

Consider the function:

f(x) = B, ), (X)) B P(x) = f(xPki) =ko®P(x®k1)PP(x) = f(x) .

In Q2, finding k; is an easy quantum problem.

B Kuwakado, Morii, “Security on the quantum-type even-mansour cipher”, ISITA
2012

D Alagic, Bai, Katz, Majenz, “Post-Quantum Security of the Even-Mansour Cipher”,
EUROCRYPT 2022
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Example: Even-Mansour cipher

k1 ko

Ekl,kz(X) =k, ® P(X@ kl)
X P Ekhkz(X)

Consider the function:

f(x) = B, ), (X)) B P(x) = f(xPki) =ko®P(x®k1)PP(x) = f(x) .

In Q2, finding k; is an easy quantum problem.

But it's Ql-secure [ABKM22]

Q Kuwakado, Morii, “Security on the quantum-type even-mansour cipher”, ISITA
2012

D Alagic, Bai, Katz, Majenz, “Post-Quantum Security of the Even-Mansour Cipher”,
EUROCRYPT 2022
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Example: ECBC-MAC

From a block cipher Ex and two keys k, k’.

Quantum Linearization Attack
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(67 X

0 —>| Ex ¢ Ex | Ew [>Tag
aq X

0 Aé* Ey Ex M Ew P>Tag

Fix a pair of values ag, ay for the first block. Define:

f(x) := MAC k (co, x) ® MACy (a1, x) .

= f(x) = f(x® Ex(ao) @ Ex(a1)) -

D Kaplan, Leurent, Leverrier, Naya-Plasencia, “Breaking Symmetric Cryptosystems

Using Quantum Period Finding”, CRYPTO 2016

Quantum Attacks on Symmetric Constructions

Maybe...
00000

12/27



Introduction Simon’s Algorithm (and Attacks) Quantum Linearization Attack Maybe...
00000 00000080000 00000 00000

Example: ECBC-MAC (ctd.)

= using Simon's algorithm, we can recover s = Ex(ag) ® Ex(c1) with
O (n) queries

Forgeries

For each message that starts with ag: agl|my||ma ... mg, we know that
ay||my @ s||ms ... m; has the same tag.

From this point onwards, we output two valid {message, tag} per query.

Quantum Attacks on Symmetric Constructions 13/27
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Example: OCB3 MAC

Quantum Linearization Attack
00000

Ao Aq Message checksum
AN AV
Ex Ex Ex
\4
D

Y
»D—» Tag

@ The offsets Ag, A1, A’V are secret-dependent
@ Only A" depends on the IV

MAC(IV, Ao, A1) = Fiiv @ Ex(Do & Ag) & Ex(A1 D A1)

D Krovetz, Rogaway, “The Software Performance of Authenticated-Encryption

Modes”, FSE 2011
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Example: OCB3 MAC (ctd.)

MAC(IV, Ao, A1) = Fiiv @ Ex(Do & Ag) & Ex(A1 B Ar)
- MACk(IV,Ao,Al) = MACk(IV,Al Bs,Ap P S) s
where s = Ag @ As.

@ But IV changes at each query: we cannot compute (quantumly)
twice the same function.
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Example: OCB3 MAC (ctd.)

MAC(IV, Ao, A1) = Fiiv @ Ex(Do & Ag) & Ex(A1 B Ar)
- MACk(IV,Ao,Al) = MACk(IV,Al Bs,Ap P S) s
where s = Ag @ As.

@ But IV changes at each query: we cannot compute (quantumly)
twice the same function.

@ Simon'’s subroutine uses a single query and the result depends
only on s

@ It works as long as s stays the same!
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First summary of attacks

When a controlled value (i.e. message block) is XORed to a secret value
(key, offset, internal state ...), we can:
@ embed a hidden boolean shift between two queries;
@ recover it with Simon's algorithm;

@ use it to break a security property.
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Interlude

What if the period changes at each query, but the function is the same?

D Bonnetain, S., “Single-Query Quantum Hidden Shift Attacks”. ToSC 2024
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Interlude

What if the period changes at each query, but the function is the same?

Single-query (kind of) shift-finding
o If Q2 access to x — g(x @ s) where g : {0,1}" — {0,1} is known
@ Find s in a single Q2 query to g(x @ s) (with some probability)
@ Requires either:
o O(2"%) Q2 queries to g

e O(2") queries to g in precomputation
e g to be “simple”

— applied to AEGIS-type AEs, but no “generic’ mode so far.

D Bonnetain, S., “Single-Query Quantum Hidden Shift Attacks”. ToSC 2024
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New example: a kind of parallel MAC

Like the OCB MAC, but:
@ Use a generic TBC
@ Use post-processing by a function F

@ With or without IVs, yields classically secure MACs such as
LightMAC and PMAC

my mo my
Exa Exo e Exe
v v

-O—> —D > Fi. v —>Tag
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There is still a periodic function

Restrict the inputs so that each block takes only two values:
my = b1]|0, ..., m; = by||0 and make a function:

Gk,IV : {0, 1}6 — {0, 1}"
(bull- - 11be) > Fon | D Ek,f(bf||0)>

1<i<¢

i=H(bq|]--[|be)

Quantum Attacks on Symmetric Constructions

Maybe...
00000

20/27



Introduction Simon’s Algorithm (and Attacks) Quantum Linearization Attack
00000 00000000000 00e00

There is still a periodic function

Restrict the inputs so that each block takes only two values:
my = b1]|0, ..., m; = by||0 and make a function:

Gk,IV : {0, 1}6 — {0, 1}"
(bull- - 11be) > Fon | D Ek,f(bf||0)>

1<i<¢

i=H(bq|]--[|be)

o If you flip b;, you XOR Ej i(bi||0) @ Ex.i(bi||1) to the output of H

— H is an affine function of its input (by]| - - ||be¢)
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There is still a periodic function

Restrict the inputs so that each block takes only two values:
my = by||0, ..., my = by||0 and make a function:

Gk,IV : {0, 1}6 — {0, 1}"
(bull- - 11be) > Fon | D Ek,,-(b,-HO))

1<i<¢

i=H(bq|]--[|be)

o If you flip b;, you XOR Ej i(bi||0) @ Ex.i(bi||1) to the output of H

— H is an affine function of its input (by]| - - ||be¢)

H(ba|[ - --[|br)
b

Maybe...
00000

= ((Ba@ @ Ba(V) - (Beel®) & Ece(1))) x | ... | oD Eei(0) |

by

M;: binary matrix, n rows and ¢ columns
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The periodic function

When ¢ > n + 1, the kernel of M, is non-trivial. Each of its elements « is
an /-bit string such that:

Vx, H(x ® o) = H(x)
= GkJV(X) = Fk,IV(H(X)) = Gk7/\/(x@ a) .

@ We recover such an o with Simon’s algorithm

@ « is information on the internal state, which allows to forge tags

D Bonnetain, Leurent, Naya-Plasencia, S., “Quantum Linearization Attacks”,
ASIACRYPT 2021
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Consequences of linearization attacks

Polynomial-time Q2 attacks on most parallel MACs (LightMAC,
PolyMAC), BBB parallel MACs, and any construction that:

@ processes the input blocks independently

@ computes one or more XOR-linear functions of these processed input
blocks

@ computes the tag from the outputs of these functions
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Maybe the Real Treasure was the Proofs
we made Along the Way
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Methods for Q2 security

Proofs of security in the Q2 setting use different tools:
@ One-way-to-hiding lemma(s)
@ Recording of random oracle queries
There may be two common issues:
o Difficulty to obtain tight proofs;
@ Impossible to prove something which has been broken
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Making modes Q2-secure

@ Tweaking the block cipher / permutation / RO calls using an IV

e The IV changes at each query = each query is “with a different
function”

@ |V-based key derivation [LL23]
@ Replace offset-based TBC (like OCB3) by a generic TBC

— this places the burden of security on the primitive

D Lang, Lucks, “On the Post-quantum Security of Classical Authenticated
Encryption Schemes”, AFRICACRYPT 2023
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Proving Q1 security instead

Since Q2 security is difficult and / or not achievable and / or not tight,
let's prove Q1 security instead?

o Tight results for Even-Mansour and tweakable EM

@ Results on Ascon

B Alagic, Bai, Katz, Majenz, “Post-Quantum Security of the Even-Mansour Cipher”,
EUROCRYPT 2022

D Alagic, Bai, Katz, Majenz, Struck, “Post-quantum Security of Tweakable
Even-Mansour, and Applications.”, EUROCRYPT 2024
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Conclusion

@ A lot of modes were broken with Q2 attacks (the situation seems
settled now?)

@ Saving the Q2 security of some modes is possible (using the classical
nature of IVs and keys)

@ For all broken modes (in the ideal model), Q1 security is an
interesting target
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Conclusion

@ A lot of modes were broken with Q2 attacks (the situation seems
settled now?)

@ Saving the Q2 security of some modes is possible (using the classical
nature of IVs and keys)

@ For all broken modes (in the ideal model), Q1 security is an
interesting target

Thank you!
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